{"title":"Rethinking Shallow and Deep Learnings for Transformer Dissolved Gas Analysis: A Review","authors":"Hong Cai Chen;Yang Zhang","doi":"10.1109/TDEI.2025.3526080","DOIUrl":null,"url":null,"abstract":"Dissolved gas analysis (DGA) of power transformers has attracted attention for years. Extensive machine learning techniques have been adopted to DGA for fault classification. Recently, deep learning (DL) techniques have been brought to deal with DGA issues, while their performances are not significantly improved compared to shallow learning (SL) algorithms. For a comprehensive investigation, this article tests popular SL algorithms and reports DL algorithms on four different DGA datasets. The results show that SL algorithms have efficient capacity for DGA analysis, while DL algorithms may not as great as they expect. In addition of complex structure and numerous parameters to tune, DL algorithms may even perform worse than SL algorithms. This work can be a reference for future DGA algorithm development.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 1","pages":"3-10"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824886/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved gas analysis (DGA) of power transformers has attracted attention for years. Extensive machine learning techniques have been adopted to DGA for fault classification. Recently, deep learning (DL) techniques have been brought to deal with DGA issues, while their performances are not significantly improved compared to shallow learning (SL) algorithms. For a comprehensive investigation, this article tests popular SL algorithms and reports DL algorithms on four different DGA datasets. The results show that SL algorithms have efficient capacity for DGA analysis, while DL algorithms may not as great as they expect. In addition of complex structure and numerous parameters to tune, DL algorithms may even perform worse than SL algorithms. This work can be a reference for future DGA algorithm development.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.