{"title":"Impact of Interphase Dielectric Property on Electric Field Distribution of Polymer Nanocomposites","authors":"Farhina Haque","doi":"10.1109/TDEI.2024.3465449","DOIUrl":null,"url":null,"abstract":"The fast-switching frequency, high slew rate, and high voltage provided by the advanced power electronics inverters promote pa discharge (PD) in the turn-to-turn insulation in the inverter-fed motors. Polymer nanocomposites have been drawing the attention of researchers as PD-resistant insulating materials in inverter-fed motors. The high-volume fraction of interphase between the metal oxide nanoparticles and polymers improves the dielectric properties of the enameled wire. In this article, a numerical model of the electric field distribution of polymer nanocomposites is developed based on the dielectric properties of the interphase between the nanoparticles and metal oxides. The relative permittivity of the interphase region is first determined from the thickness and volume fraction of nanoparticles. A numerical model of polymer nanocomposites is developed in COMSOL Multiphysics to determine the electric field distribution for various interphase relative permittivity driven by the volume fraction of nanoparticles and interphase thickness. This numerical model is useful in designing polymer composites to effectively mitigate PD in inverter-fed motor windings.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 1","pages":"239-245"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10685524/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The fast-switching frequency, high slew rate, and high voltage provided by the advanced power electronics inverters promote pa discharge (PD) in the turn-to-turn insulation in the inverter-fed motors. Polymer nanocomposites have been drawing the attention of researchers as PD-resistant insulating materials in inverter-fed motors. The high-volume fraction of interphase between the metal oxide nanoparticles and polymers improves the dielectric properties of the enameled wire. In this article, a numerical model of the electric field distribution of polymer nanocomposites is developed based on the dielectric properties of the interphase between the nanoparticles and metal oxides. The relative permittivity of the interphase region is first determined from the thickness and volume fraction of nanoparticles. A numerical model of polymer nanocomposites is developed in COMSOL Multiphysics to determine the electric field distribution for various interphase relative permittivity driven by the volume fraction of nanoparticles and interphase thickness. This numerical model is useful in designing polymer composites to effectively mitigate PD in inverter-fed motor windings.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.