The Electrical Conductivity Characteristics of Polyimide During the Thermal Cycle

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bingying Chen;Geng Chen;Ruyun Yang;Qilin Han;Tong Li;Cong Wang;Youping Tu
{"title":"The Electrical Conductivity Characteristics of Polyimide During the Thermal Cycle","authors":"Bingying Chen;Geng Chen;Ruyun Yang;Qilin Han;Tong Li;Cong Wang;Youping Tu","doi":"10.1109/TDEI.2024.3465468","DOIUrl":null,"url":null,"abstract":"2 K/min and even faster rates of thermal cycle environments in low earth orbit alter the electrical conductivity characteristics of polyimide, which may exacerbate charge accumulation and electrostatic discharge (ESD) and seriously threaten the safety of spacecraft. This work focuses on the conductivity characteristics during the thermal cycle by leakage current measurement and demonstrates that the multiple energy levels traps play an important role in conductivity by the thermally stimulated depolarization current (TSDC) measurements. The results show that the current has a nonmonotonic temperature dependence with polar peaks and decreases periodically during the 5 K/min thermal cycle. After 24 thermal cycles, there is a 77.3% reduction in conductivity at 343 K and a 54.0% reduction compared with the 343 K steady-state temperature. The conductivity increases when the thermal cycle rate increases to 10 K/min. The results attribute to the combined effect of nonunidirectional dipole steering, thermally stimulated detrapping effects dominated by the shallower energy levels <inline-formula> <tex-math>$\\beta _{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\beta _{{2}}$ </tex-math></inline-formula> traps, and trap-filling effects dominated by the deeper energy levels <inline-formula> <tex-math>$\\beta _{{3}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula> traps. The findings in this study can provide experimental support to reveal the conductivity variation mechanisms in time-varying temperatures.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 1","pages":"231-238"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10685505/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

2 K/min and even faster rates of thermal cycle environments in low earth orbit alter the electrical conductivity characteristics of polyimide, which may exacerbate charge accumulation and electrostatic discharge (ESD) and seriously threaten the safety of spacecraft. This work focuses on the conductivity characteristics during the thermal cycle by leakage current measurement and demonstrates that the multiple energy levels traps play an important role in conductivity by the thermally stimulated depolarization current (TSDC) measurements. The results show that the current has a nonmonotonic temperature dependence with polar peaks and decreases periodically during the 5 K/min thermal cycle. After 24 thermal cycles, there is a 77.3% reduction in conductivity at 343 K and a 54.0% reduction compared with the 343 K steady-state temperature. The conductivity increases when the thermal cycle rate increases to 10 K/min. The results attribute to the combined effect of nonunidirectional dipole steering, thermally stimulated detrapping effects dominated by the shallower energy levels $\beta _{{1}}$ and $\beta _{{2}}$ traps, and trap-filling effects dominated by the deeper energy levels $\beta _{{3}}$ and $\alpha $ traps. The findings in this study can provide experimental support to reveal the conductivity variation mechanisms in time-varying temperatures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信