Application of PDC Testing for Medium-Voltage XLPE Cable Joint Water Ingress Detection

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Changyou Suo;Hongyan Cao;Wenkwang Chern;Amer Ghias
{"title":"Application of PDC Testing for Medium-Voltage XLPE Cable Joint Water Ingress Detection","authors":"Changyou Suo;Hongyan Cao;Wenkwang Chern;Amer Ghias","doi":"10.1109/TDEI.2024.3523877","DOIUrl":null,"url":null,"abstract":"This article took 6.6-kV medium-voltage crosslinked polyethylene (XLPE) cables as the test object, conducting field tests of polarization and depolarization currents (PDCs), very-low-frequency (VLF) tan <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula>, and time-domain reflectometry (TDR). The correlation between PDC testing and VLF tan <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula> and TDR measurements was investigated to enhance the effectiveness of the PDC testing method. PDC test outcomes indicated that polarization currents sometimes exhibit increasing or non monotonic trends over time, referred to as abnormal trends herein. Through in-depth research combining TDR measurement results and relevant theoretical frameworks, it is confirmed that abnormal polarization currents are attributable to water ingress issues in cable joints. Water ingress into the joint induces nonlinear variations in insulation conductivity with the electric field, manifesting as abnormal trends in polarization currents at the joint-insulation interface. These kinds of abnormal polarization currents can serve as an effective diagnostic indicator for identifying cable joint issues. Moreover, VLF tan <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula> measurements alone sometimes fail to accurately diagnose water ingress issues in cable joints, necessitating the use of TDR for further diagnosis.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 1","pages":"36-44"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817615/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article took 6.6-kV medium-voltage crosslinked polyethylene (XLPE) cables as the test object, conducting field tests of polarization and depolarization currents (PDCs), very-low-frequency (VLF) tan $\delta $ , and time-domain reflectometry (TDR). The correlation between PDC testing and VLF tan $\delta $ and TDR measurements was investigated to enhance the effectiveness of the PDC testing method. PDC test outcomes indicated that polarization currents sometimes exhibit increasing or non monotonic trends over time, referred to as abnormal trends herein. Through in-depth research combining TDR measurement results and relevant theoretical frameworks, it is confirmed that abnormal polarization currents are attributable to water ingress issues in cable joints. Water ingress into the joint induces nonlinear variations in insulation conductivity with the electric field, manifesting as abnormal trends in polarization currents at the joint-insulation interface. These kinds of abnormal polarization currents can serve as an effective diagnostic indicator for identifying cable joint issues. Moreover, VLF tan $\delta $ measurements alone sometimes fail to accurately diagnose water ingress issues in cable joints, necessitating the use of TDR for further diagnosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信