Anomaly Detection in High Mobility MDT Traces Through Self-Supervised Learning

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
J. M. Sánchez-Martín;C. Gijón;M. Toril;S. Luna-Ramírez;V. Wille
{"title":"Anomaly Detection in High Mobility MDT Traces Through Self-Supervised Learning","authors":"J. M. Sánchez-Martín;C. Gijón;M. Toril;S. Luna-Ramírez;V. Wille","doi":"10.1109/OJVT.2024.3524057","DOIUrl":null,"url":null,"abstract":"Radio access network optimization is a critical task in current cellular systems. For this purpose, Minimization of Drive Test (MDT) functionality provides mobile operators with georeferenced network performance statistics to tune radio propagation models in re-planning tools. However, some samples in MDT traces contain critical location errors due to the user equipment's energy-saving, thus making MDT data filtering vital to guarantee an adequate performance of MDT-driven algorithms. Supervised Learning (SL) allows to train automatic systems for detecting abnormal MDT measurements by using a labeled dataset. Unfortunately, labeling MDT data is a labor-intensive task, that can be alleviated by using Self-Supervised Learning (SSL). This work presents a novel SSL method to detect MDT measurements with abnormal position information in road scenarios. For this purpose, a dataset is first labeled by combining unlabeled MDT traces from high-mobility users and freely available land use maps, and then an SL classifier is trained. Model assessment is carried out using MDT data collected in a live Long-Term Evolution (LTE) network. Performance analysis includes the comparison of six well-known SL algorithms and 3 different sets of input features aiming to improve model accuracy, generalizability, and explainability, respectively. Results show that considering predictors regarding positioning error increases model accuracy, whereas omitting this information allows to cover a wider range of terminals. Likewise, Shapley Additive exPlanations (SHAP) analysis proves that the use of high-level predictors significantly improves model explainability.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"396-411"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818611","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818611/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Radio access network optimization is a critical task in current cellular systems. For this purpose, Minimization of Drive Test (MDT) functionality provides mobile operators with georeferenced network performance statistics to tune radio propagation models in re-planning tools. However, some samples in MDT traces contain critical location errors due to the user equipment's energy-saving, thus making MDT data filtering vital to guarantee an adequate performance of MDT-driven algorithms. Supervised Learning (SL) allows to train automatic systems for detecting abnormal MDT measurements by using a labeled dataset. Unfortunately, labeling MDT data is a labor-intensive task, that can be alleviated by using Self-Supervised Learning (SSL). This work presents a novel SSL method to detect MDT measurements with abnormal position information in road scenarios. For this purpose, a dataset is first labeled by combining unlabeled MDT traces from high-mobility users and freely available land use maps, and then an SL classifier is trained. Model assessment is carried out using MDT data collected in a live Long-Term Evolution (LTE) network. Performance analysis includes the comparison of six well-known SL algorithms and 3 different sets of input features aiming to improve model accuracy, generalizability, and explainability, respectively. Results show that considering predictors regarding positioning error increases model accuracy, whereas omitting this information allows to cover a wider range of terminals. Likewise, Shapley Additive exPlanations (SHAP) analysis proves that the use of high-level predictors significantly improves model explainability.
基于自监督学习的高迁移率MDT轨迹异常检测
无线接入网络优化是当前蜂窝系统中的一项关键任务。为此,最小化驱动测试(MDT)功能为移动运营商提供了地理参考网络性能统计数据,以便在重新规划工具中调整无线电传播模型。然而,由于用户设备的节能,MDT轨迹中的一些样本包含关键的定位误差,因此MDT数据滤波对于保证MDT驱动算法的足够性能至关重要。监督学习(SL)允许使用标记数据集训练检测异常MDT测量的自动系统。不幸的是,标记MDT数据是一项劳动密集型任务,可以通过使用自监督学习(Self-Supervised Learning, SSL)来减轻这一负担。本文提出了一种新的SSL方法来检测道路场景中具有异常位置信息的MDT测量。为此,首先通过结合来自高流动性用户的未标记MDT轨迹和免费可用的土地使用地图来标记数据集,然后训练SL分类器。模型评估使用在实时长期演进(LTE)网络中收集的MDT数据进行。性能分析包括比较六种知名的SL算法和三组不同的输入特征,旨在分别提高模型的准确性、泛化性和可解释性。结果表明,考虑有关定位误差的预测因子可以提高模型精度,而忽略这一信息则可以覆盖更大范围的终端。同样,Shapley加性解释(SHAP)分析证明,使用高级预测因子显著提高了模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信