Optimizing Energy Consumption and Latency in IoT Through Edge Computing in Air–Ground Integrated Network With Deep Reinforcement Learning

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Vitou That;Kimchheang Chhea;Jung-Ryun Lee
{"title":"Optimizing Energy Consumption and Latency in IoT Through Edge Computing in Air–Ground Integrated Network With Deep Reinforcement Learning","authors":"Vitou That;Kimchheang Chhea;Jung-Ryun Lee","doi":"10.1109/OJVT.2024.3507288","DOIUrl":null,"url":null,"abstract":"With the increasing computational demands of Internet of Things (IoT) applications, air-ground integrated networks (AGIN), leveraging the capabilities of Unmanned Aerial Vehicles (UAVs) and High-Altitude Platform (HAP), provides an essential solution to these challenges. In this paper, we propose a framework that facilitates local computing at IoT devices and offers the flexibility to offload tasks to aerial platforms when necessary. Specifically, we formulate a multi-objective optimization model aiming at simultaneously minimizing energy consumption and reducing task latency by adjusting control variables such as transmit power, offloading decisions, and UAV placement in a distributed network of IoT devices. Our proposed framework employs Deep Deterministic Policy Gradient (DDPG) techniques to dynamically optimize network operations, allowing for efficient real-time adjustments to network conditions and task demands. The performance of the proposed algorithm is compared to traditional algorithms, including the Whale Optimization Algorithm (WOA), Gradient Search with Barrier, and Bayesian Optimization (BO). Simulation results show that this approach significantly minimizes energy consumption and latency, outperforming conventional optimization methods. Additionally, scalability tests confirm that our framework can efficiently integrate an increasing number of IoT devices and UAVs.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"412-425"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10768987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10768987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing computational demands of Internet of Things (IoT) applications, air-ground integrated networks (AGIN), leveraging the capabilities of Unmanned Aerial Vehicles (UAVs) and High-Altitude Platform (HAP), provides an essential solution to these challenges. In this paper, we propose a framework that facilitates local computing at IoT devices and offers the flexibility to offload tasks to aerial platforms when necessary. Specifically, we formulate a multi-objective optimization model aiming at simultaneously minimizing energy consumption and reducing task latency by adjusting control variables such as transmit power, offloading decisions, and UAV placement in a distributed network of IoT devices. Our proposed framework employs Deep Deterministic Policy Gradient (DDPG) techniques to dynamically optimize network operations, allowing for efficient real-time adjustments to network conditions and task demands. The performance of the proposed algorithm is compared to traditional algorithms, including the Whale Optimization Algorithm (WOA), Gradient Search with Barrier, and Bayesian Optimization (BO). Simulation results show that this approach significantly minimizes energy consumption and latency, outperforming conventional optimization methods. Additionally, scalability tests confirm that our framework can efficiently integrate an increasing number of IoT devices and UAVs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信