Enhancing RFID Antenna Electromagnetic Fingerprints Through Non-Linear Interrogation

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Francesca Maria Chiara Nanni;Gaetano Marrocco
{"title":"Enhancing RFID Antenna Electromagnetic Fingerprints Through Non-Linear Interrogation","authors":"Francesca Maria Chiara Nanni;Gaetano Marrocco","doi":"10.1109/JRFID.2024.3509617","DOIUrl":null,"url":null,"abstract":"Fingerprinting stands as an effective non-intrusive and non-destructive method to ensure physical security in wireless systems and Radio-Frequency Identification (RFID) applications. Conventionally, the most common state of the art approach involves extracting signal features from the devices and employing machine learning techniques for the classification of counterfeit or cloned ones. This paper explores how to enhance RFID antenna electromagnetic fingerprints by proposing a multi-power interrogation approach. Unlike traditional methods, our technique emphasizes the non-linear behavior of RFID integrated circuits (ICs) by properly varying the reader input power and frequencies. This strategy increases the unpredictability of the IC impedance modulation, thereby extracting richer and more complex information from the RFID tags. Using Shannon Information Theory, we can quantify the entropy of these enhanced fingerprints, revealing an average increase of almost 2 bits in the information content compared to single-power level interrogations. Our findings can lay the foundations to implement more robust RF physical unclonable functions (PUFs) with robust physical keys against counterfeiting and replication threats.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"46-53"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10771976/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprinting stands as an effective non-intrusive and non-destructive method to ensure physical security in wireless systems and Radio-Frequency Identification (RFID) applications. Conventionally, the most common state of the art approach involves extracting signal features from the devices and employing machine learning techniques for the classification of counterfeit or cloned ones. This paper explores how to enhance RFID antenna electromagnetic fingerprints by proposing a multi-power interrogation approach. Unlike traditional methods, our technique emphasizes the non-linear behavior of RFID integrated circuits (ICs) by properly varying the reader input power and frequencies. This strategy increases the unpredictability of the IC impedance modulation, thereby extracting richer and more complex information from the RFID tags. Using Shannon Information Theory, we can quantify the entropy of these enhanced fingerprints, revealing an average increase of almost 2 bits in the information content compared to single-power level interrogations. Our findings can lay the foundations to implement more robust RF physical unclonable functions (PUFs) with robust physical keys against counterfeiting and replication threats.
非线性问询增强RFID天线电磁指纹
在无线系统和射频识别(RFID)应用中,指纹识别是一种有效的非侵入性和非破坏性的方法,可以确保物理安全。传统上,最常见的最先进的方法包括从设备中提取信号特征,并使用机器学习技术对假冒或克隆设备进行分类。本文通过提出一种多功率询问方法,探讨如何增强RFID天线的电磁指纹。与传统方法不同,我们的技术通过适当改变读取器输入功率和频率来强调RFID集成电路(ic)的非线性行为。这种策略增加了IC阻抗调制的不可预测性,从而从RFID标签中提取更丰富、更复杂的信息。利用香农信息理论,我们可以量化这些增强指纹的熵,揭示与单功率级审讯相比,信息内容平均增加了近2位。我们的研究结果可以为实现更强大的RF物理不可克隆功能(puf)奠定基础,这些功能具有强大的物理密钥,可以抵御伪造和复制威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信