Enhancing RFID Antenna Electromagnetic Fingerprints Through Non-Linear Interrogation

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Francesca Maria Chiara Nanni;Gaetano Marrocco
{"title":"Enhancing RFID Antenna Electromagnetic Fingerprints Through Non-Linear Interrogation","authors":"Francesca Maria Chiara Nanni;Gaetano Marrocco","doi":"10.1109/JRFID.2024.3509617","DOIUrl":null,"url":null,"abstract":"Fingerprinting stands as an effective non-intrusive and non-destructive method to ensure physical security in wireless systems and Radio-Frequency Identification (RFID) applications. Conventionally, the most common state of the art approach involves extracting signal features from the devices and employing machine learning techniques for the classification of counterfeit or cloned ones. This paper explores how to enhance RFID antenna electromagnetic fingerprints by proposing a multi-power interrogation approach. Unlike traditional methods, our technique emphasizes the non-linear behavior of RFID integrated circuits (ICs) by properly varying the reader input power and frequencies. This strategy increases the unpredictability of the IC impedance modulation, thereby extracting richer and more complex information from the RFID tags. Using Shannon Information Theory, we can quantify the entropy of these enhanced fingerprints, revealing an average increase of almost 2 bits in the information content compared to single-power level interrogations. Our findings can lay the foundations to implement more robust RF physical unclonable functions (PUFs) with robust physical keys against counterfeiting and replication threats.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"46-53"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10771976/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprinting stands as an effective non-intrusive and non-destructive method to ensure physical security in wireless systems and Radio-Frequency Identification (RFID) applications. Conventionally, the most common state of the art approach involves extracting signal features from the devices and employing machine learning techniques for the classification of counterfeit or cloned ones. This paper explores how to enhance RFID antenna electromagnetic fingerprints by proposing a multi-power interrogation approach. Unlike traditional methods, our technique emphasizes the non-linear behavior of RFID integrated circuits (ICs) by properly varying the reader input power and frequencies. This strategy increases the unpredictability of the IC impedance modulation, thereby extracting richer and more complex information from the RFID tags. Using Shannon Information Theory, we can quantify the entropy of these enhanced fingerprints, revealing an average increase of almost 2 bits in the information content compared to single-power level interrogations. Our findings can lay the foundations to implement more robust RF physical unclonable functions (PUFs) with robust physical keys against counterfeiting and replication threats.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信