Ultrahigh-Performance Radio Frequency System-on-Chip Implementation of a Kalman Filter-Based High-Precision Time and Frequency Synchronization for Networked Integrated Sensing and Communication Systems

Roghayeh Ghasemi;Patrick Fenske;Tobias Koegel;Markus Hehn;Ingrid Ullmann;Martin Vossiek
{"title":"Ultrahigh-Performance Radio Frequency System-on-Chip Implementation of a Kalman Filter-Based High-Precision Time and Frequency Synchronization for Networked Integrated Sensing and Communication Systems","authors":"Roghayeh Ghasemi;Patrick Fenske;Tobias Koegel;Markus Hehn;Ingrid Ullmann;Martin Vossiek","doi":"10.1109/OJIM.2025.3527532","DOIUrl":null,"url":null,"abstract":"The integration of radar sensing and imaging capabilities into future integrated sensing and communication (ISAC) networks enables advanced use cases, including autonomous vehicle navigation, real-time health monitoring, and smart city management. However, ultraprecise time and frequency synchronization is crucial for unlocking the full potential of such networked ISAC systems. In this article, a novel real-time wireless time and frequency synchronization scheme is developed and fully implemented on a high-end radio frequency system-on-chip field-programmable gate array (FPGA) platform. The excellent performance and robustness of the proposed solution in practical applications are demonstrated. It is evidenced that the recursive nature of the Kalman filter is well suited to the dynamic capabilities of FPGA-based simultaneous synchronization. Observed values obtained through the precision time protocol (PTP) are iteratively refined, thus effectively compensating for uncertainties encountered during a synchronization packet exchange. Due to the deterministic processing time inherent in the FPGA, the proposed synchronization method achieves exceptional precision, with clock offset deviations in the nanosecond range and clock rate deviations limited to only a few parts per billion, even across considerable distances between the network nodes.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835166/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of radar sensing and imaging capabilities into future integrated sensing and communication (ISAC) networks enables advanced use cases, including autonomous vehicle navigation, real-time health monitoring, and smart city management. However, ultraprecise time and frequency synchronization is crucial for unlocking the full potential of such networked ISAC systems. In this article, a novel real-time wireless time and frequency synchronization scheme is developed and fully implemented on a high-end radio frequency system-on-chip field-programmable gate array (FPGA) platform. The excellent performance and robustness of the proposed solution in practical applications are demonstrated. It is evidenced that the recursive nature of the Kalman filter is well suited to the dynamic capabilities of FPGA-based simultaneous synchronization. Observed values obtained through the precision time protocol (PTP) are iteratively refined, thus effectively compensating for uncertainties encountered during a synchronization packet exchange. Due to the deterministic processing time inherent in the FPGA, the proposed synchronization method achieves exceptional precision, with clock offset deviations in the nanosecond range and clock rate deviations limited to only a few parts per billion, even across considerable distances between the network nodes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信