Transformer-Based Automatic Target Recognition for 3D-InISAR

Giulio Meucci;Elisa Giusti;Ajeet Kumar;Francesco Mancuso;Selenia Ghio;Marco Martorella
{"title":"Transformer-Based Automatic Target Recognition for 3D-InISAR","authors":"Giulio Meucci;Elisa Giusti;Ajeet Kumar;Francesco Mancuso;Selenia Ghio;Marco Martorella","doi":"10.1109/TRS.2025.3527281","DOIUrl":null,"url":null,"abstract":"The 3-D interferometric inverse synthetic aperture radar (3D-InISAR) imaging provides a more complete and reliable representation of targets compared to traditional 2D-ISAR, overcoming limitations related to the geometry of the radar-target system and relative motion. This article presents the application of a point cloud transformer (PCT) for automatic target recognition (ATR) using 3D-InISAR data. The PCT model, originally developed to classify LIDAR’s point clouds, is trained on sparse synthetic point cloud datasets representing various military vehicles, including cars, tanks, and trucks. The synthetic data are carefully generated from computer-aided design (CAD) models, incorporating techniques such as voxel downsampling and data augmentation to ensure high fidelity and diversity. Initial testing on synthetic data demonstrates the PCT’s robustness and high accuracy when used for ATR. To bridge the gap between synthetic and real data, a transfer learning approach is employed, which operates a fine-tuning on the pretrained model by using real 3D-InISAR point clouds obtained from the publicly available sensor data management system (SDMS)-Air Force Research Laboratory (AFRL) dataset. Results show significant improvements in classification accuracy post-fine-tuning, validating the effectiveness of the PCT model for real-world ATR applications. The findings highlight the potential of transformer-based models in enhancing target recognition systems for future ATR systems based on 3-D radar images.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"180-192"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10833573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10833573/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 3-D interferometric inverse synthetic aperture radar (3D-InISAR) imaging provides a more complete and reliable representation of targets compared to traditional 2D-ISAR, overcoming limitations related to the geometry of the radar-target system and relative motion. This article presents the application of a point cloud transformer (PCT) for automatic target recognition (ATR) using 3D-InISAR data. The PCT model, originally developed to classify LIDAR’s point clouds, is trained on sparse synthetic point cloud datasets representing various military vehicles, including cars, tanks, and trucks. The synthetic data are carefully generated from computer-aided design (CAD) models, incorporating techniques such as voxel downsampling and data augmentation to ensure high fidelity and diversity. Initial testing on synthetic data demonstrates the PCT’s robustness and high accuracy when used for ATR. To bridge the gap between synthetic and real data, a transfer learning approach is employed, which operates a fine-tuning on the pretrained model by using real 3D-InISAR point clouds obtained from the publicly available sensor data management system (SDMS)-Air Force Research Laboratory (AFRL) dataset. Results show significant improvements in classification accuracy post-fine-tuning, validating the effectiveness of the PCT model for real-world ATR applications. The findings highlight the potential of transformer-based models in enhancing target recognition systems for future ATR systems based on 3-D radar images.
基于变压器的3D-InISAR自动目标识别
与传统的2D-ISAR相比,三维干涉反合成孔径雷达(3D-InISAR)成像提供了更完整和可靠的目标表示,克服了与雷达-目标系统几何形状和相对运动相关的限制。本文介绍了点云变压器(PCT)在3D-InISAR数据自动目标识别(ATR)中的应用。PCT模型最初是为了对激光雷达的点云进行分类而开发的,它是在代表各种军用车辆(包括汽车、坦克和卡车)的稀疏合成点云数据集上进行训练的。合成数据从计算机辅助设计(CAD)模型中仔细生成,结合体素降采样和数据增强等技术,以确保高保真度和多样性。对合成数据的初步测试表明,PCT在用于ATR时具有鲁棒性和高精度。为了弥合合成数据和真实数据之间的差距,采用了一种迁移学习方法,该方法通过使用从公开可用的传感器数据管理系统(SDMS)-空军研究实验室(AFRL)数据集获得的真实3D-InISAR点云,对预训练模型进行微调。结果显示,经过微调后,分类精度有了显著提高,验证了PCT模型在实际ATR应用中的有效性。研究结果强调了基于变压器的模型在增强未来基于三维雷达图像的ATR系统的目标识别系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信