EMI Shielding With Anisotropic Frequency Selective Surfaces: A Neural Network and Equivalent Circuit Approach

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sairam SD;Sriram Kumar Dhamodharan
{"title":"EMI Shielding With Anisotropic Frequency Selective Surfaces: A Neural Network and Equivalent Circuit Approach","authors":"Sairam SD;Sriram Kumar Dhamodharan","doi":"10.1109/JMMCT.2025.3528076","DOIUrl":null,"url":null,"abstract":"A multi-layer perceptron (MLP) model was applied to electromagnetic shielding to analyze a coupled ring anisotropic frequency selective surface (CRAFSS) using an equivalent circuit model. The shielding structure, based on a single-sided RT 5880 array, features unit elements with dimensions of <inline-formula><tex-math>$0.55\\lambda _{0} \\times 0.41\\lambda _{0}$</tex-math></inline-formula> at the resonant frequency. Various deep neural network (DNN) configurations with hidden layers were tested to achieve optimal results, reaching a minimal mean square error (MSE) of <inline-formula><tex-math>$1.012 \\times 10^{-4}$</tex-math></inline-formula>. The MLP was trained using input parameters such as S-parameters, resonant frequency, and shielding effectiveness, with the output being the dimensions of the proposed shielding structure. The dataset, built from capacitance and inductance values, was used for testing, training, and validation within the neural network, eventually employing inverse modeling for output prediction. The structure demonstrated stable bandwidth performance despite changes in the incidence angle of transverse magnetic (TM) and transverse electric (TE) polarizations, shifting from <inline-formula><tex-math>$\\theta$</tex-math></inline-formula> = <inline-formula><tex-math>$0^{0}$</tex-math></inline-formula> to <inline-formula><tex-math>$60^{0}$</tex-math></inline-formula>. The anisotropic FSS was developed and evaluated, with deep learning results and electromagnetic (EM) simulations playing a key role in the design process.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"94-103"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10836740/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-layer perceptron (MLP) model was applied to electromagnetic shielding to analyze a coupled ring anisotropic frequency selective surface (CRAFSS) using an equivalent circuit model. The shielding structure, based on a single-sided RT 5880 array, features unit elements with dimensions of $0.55\lambda _{0} \times 0.41\lambda _{0}$ at the resonant frequency. Various deep neural network (DNN) configurations with hidden layers were tested to achieve optimal results, reaching a minimal mean square error (MSE) of $1.012 \times 10^{-4}$. The MLP was trained using input parameters such as S-parameters, resonant frequency, and shielding effectiveness, with the output being the dimensions of the proposed shielding structure. The dataset, built from capacitance and inductance values, was used for testing, training, and validation within the neural network, eventually employing inverse modeling for output prediction. The structure demonstrated stable bandwidth performance despite changes in the incidence angle of transverse magnetic (TM) and transverse electric (TE) polarizations, shifting from $\theta$ = $0^{0}$ to $60^{0}$. The anisotropic FSS was developed and evaluated, with deep learning results and electromagnetic (EM) simulations playing a key role in the design process.
具有各向异性频率选择表面的电磁干扰屏蔽:一种神经网络和等效电路方法
将多层感知器(MLP)模型应用于电磁屏蔽中,利用等效电路模型分析耦合环形各向异性频率选择面(CRAFSS)。该屏蔽结构基于单面RT 5880阵列,在谐振频率处具有尺寸为$0.55\lambda _{0} \times 0.41\lambda _{0}$的单元元件。为了获得最优的结果,我们测试了各种带有隐藏层的深度神经网络(DNN)配置,其均方误差(MSE)最小值为$1.012 \times 10^{-4}$。MLP使用s参数、谐振频率和屏蔽效率等输入参数进行训练,输出是所提出的屏蔽结构的尺寸。该数据集由电容和电感值构建,用于神经网络内的测试、训练和验证,最终采用逆建模进行输出预测。尽管横向磁极化(TM)和横向电极化(TE)的入射角从$\theta$ = $0^{0}$变化到$60^{0}$,但该结构的带宽性能仍然稳定。开发和评估了各向异性FSS,深度学习结果和电磁(EM)模拟在设计过程中发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信