Effect of P-Electrode Area Ratio on Micro-LED Optoelectronic Performance

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shi-Biao Liu;Wen-An Guo;You-Cai Deng;Ming-He Wan;Mai-Jia Lin;Tao-Ming Liu;Yue-Lin;Hao-Chung Kuo;Yi-Jun Lu;Zhong Chen;Ting-Zhu Wu
{"title":"Effect of P-Electrode Area Ratio on Micro-LED Optoelectronic Performance","authors":"Shi-Biao Liu;Wen-An Guo;You-Cai Deng;Ming-He Wan;Mai-Jia Lin;Tao-Ming Liu;Yue-Lin;Hao-Chung Kuo;Yi-Jun Lu;Zhong Chen;Ting-Zhu Wu","doi":"10.1109/LPT.2025.3534203","DOIUrl":null,"url":null,"abstract":"The P-electrode is essential for achieving uniform current distribution within the chip, which directly affects the device optoelectronic performance. In this study, micro-LEDs of varying sizes (22, 34, and <inline-formula> <tex-math>$46~\\mu $ </tex-math></inline-formula>m) and P-electrode area ratios (20%, 30%, and 40%) were fabricated and analyzed. The findings reveal that the optoelectronic performance of micro-LEDs smaller than <inline-formula> <tex-math>$50~\\mu $ </tex-math></inline-formula>m is significantly affected by different P-electrode area ratios under low current density conditions. This effect primarily results from the combined influence of current distribution and the light-blocking properties of the P-electrode metal. To characterize the performance of these micro-LEDs, hyperspectral imaging and COMSOL simulations were employed. The insights gained from these results provide valuable guidance for the design and fabrication of micro-LEDs optimized for low current density operation.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 4","pages":"239-242"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10854536/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The P-electrode is essential for achieving uniform current distribution within the chip, which directly affects the device optoelectronic performance. In this study, micro-LEDs of varying sizes (22, 34, and $46~\mu $ m) and P-electrode area ratios (20%, 30%, and 40%) were fabricated and analyzed. The findings reveal that the optoelectronic performance of micro-LEDs smaller than $50~\mu $ m is significantly affected by different P-electrode area ratios under low current density conditions. This effect primarily results from the combined influence of current distribution and the light-blocking properties of the P-electrode metal. To characterize the performance of these micro-LEDs, hyperspectral imaging and COMSOL simulations were employed. The insights gained from these results provide valuable guidance for the design and fabrication of micro-LEDs optimized for low current density operation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信