Shuai Wang;Han Ye;Liyan Geng;Yimiao Chu;Yu Zheng;Qin Han
{"title":"High-Speed Planar InGaAs/InAlAs Avalanche Photodiode","authors":"Shuai Wang;Han Ye;Liyan Geng;Yimiao Chu;Yu Zheng;Qin Han","doi":"10.1109/LPT.2025.3534294","DOIUrl":null,"url":null,"abstract":"This letter describes a planar avalanche photodiode (APD) with 3dB bandwidth of 40 GHz at gain of 2.5, which is the highest bandwidth among reported vertical planar InAlAs APD. The APD adopts selective Zn diffusion to form the planar structure. Scale of the APD can be easily reduced to meet the needs of high-speed operation. The added p/n double charge layers can accurately adjust the electric field distribution inside the APD. By optimizing the thickness of the absorption and the transit layers, a compromise can be determined between carrier transport time and capacitance to achieve high bandwidth. An equivalent circuit of planar APD was established, laying the foundation for characteristics performance optimization. The fabricated APD uses 90 nm InAlAs as the multiplication layer and the dark current is <inline-formula> <tex-math>$1~{\\mu } $ </tex-math></inline-formula>A. The responsivity of the top-incidence APD without anti-reflection is 0.15 A/W at <inline-formula> <tex-math>$1.55~{\\mu } $ </tex-math></inline-formula>m. The gain reaches 45 when the incident light intensity is <inline-formula> <tex-math>$10~{\\mu } $ </tex-math></inline-formula>W.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 4","pages":"235-238"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10854528/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter describes a planar avalanche photodiode (APD) with 3dB bandwidth of 40 GHz at gain of 2.5, which is the highest bandwidth among reported vertical planar InAlAs APD. The APD adopts selective Zn diffusion to form the planar structure. Scale of the APD can be easily reduced to meet the needs of high-speed operation. The added p/n double charge layers can accurately adjust the electric field distribution inside the APD. By optimizing the thickness of the absorption and the transit layers, a compromise can be determined between carrier transport time and capacitance to achieve high bandwidth. An equivalent circuit of planar APD was established, laying the foundation for characteristics performance optimization. The fabricated APD uses 90 nm InAlAs as the multiplication layer and the dark current is $1~{\mu } $ A. The responsivity of the top-incidence APD without anti-reflection is 0.15 A/W at $1.55~{\mu } $ m. The gain reaches 45 when the incident light intensity is $10~{\mu } $ W.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.