Optimizing Blockchain-Enabled Sustainable Supply Chains

IF 4.6 3区 管理学 Q1 BUSINESS
Jingwen Wu;Yuting Yan;Shuaian Wang;Lu Zhen
{"title":"Optimizing Blockchain-Enabled Sustainable Supply Chains","authors":"Jingwen Wu;Yuting Yan;Shuaian Wang;Lu Zhen","doi":"10.1109/TEM.2024.3525105","DOIUrl":null,"url":null,"abstract":"The increasing pressure on global supply chains to reduce carbon emissions has driven the need for sustainable supply chain network design (SSCND). This article proposes an innovative framework for SSCND that optimizes facility location and scale decisions under uncertainty using blockchain technology. By incorporating cap-and-trade regulations and carbon trading into a mixed-integer linear programming model, the article addresses both the economic and environmental objectives of supply chains. A two-stage stochastic programming approach is employed to optimize the SSCND. The first stage focuses on facility location decisions and the second stage on production adjustment, transportation, and carbon trading under demand uncertainty. The carbon trading decisions are integrated into the model by assigning a monetary value to carbon dioxide emissions and allowing for dynamic adjustments to real-time environmental impacts. A primal decomposition algorithm is introduced to address the computational challenges involved in solving the two-stage stochastic programming model. Numerical experiments based on data derived from SAIC Motor Corporation's supply chain demonstrate the effectiveness of the model and algorithm. This article provides an efficient approach for integrating environmental sustainability into supply chain management, offering valuable insights for industries aiming to achieve carbon neutrality","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":"72 ","pages":"426-445"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10829986/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing pressure on global supply chains to reduce carbon emissions has driven the need for sustainable supply chain network design (SSCND). This article proposes an innovative framework for SSCND that optimizes facility location and scale decisions under uncertainty using blockchain technology. By incorporating cap-and-trade regulations and carbon trading into a mixed-integer linear programming model, the article addresses both the economic and environmental objectives of supply chains. A two-stage stochastic programming approach is employed to optimize the SSCND. The first stage focuses on facility location decisions and the second stage on production adjustment, transportation, and carbon trading under demand uncertainty. The carbon trading decisions are integrated into the model by assigning a monetary value to carbon dioxide emissions and allowing for dynamic adjustments to real-time environmental impacts. A primal decomposition algorithm is introduced to address the computational challenges involved in solving the two-stage stochastic programming model. Numerical experiments based on data derived from SAIC Motor Corporation's supply chain demonstrate the effectiveness of the model and algorithm. This article provides an efficient approach for integrating environmental sustainability into supply chain management, offering valuable insights for industries aiming to achieve carbon neutrality
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Engineering Management
IEEE Transactions on Engineering Management 管理科学-工程:工业
CiteScore
10.30
自引率
19.00%
发文量
604
审稿时长
5.3 months
期刊介绍: Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信