DistFlow Safe Reinforcement Learning Algorithm for Voltage Magnitude Regulation in Distribution Networks

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara
{"title":"DistFlow Safe Reinforcement Learning Algorithm for Voltage Magnitude Regulation in Distribution Networks","authors":"Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara","doi":"10.35833/MPCE.2024.000253","DOIUrl":null,"url":null,"abstract":"The integration of distributed energy resources (DERs) has escalated the challenge of voltage magnitude regulation in distribution networks. Model-based approaches, which rely on complex sequential mathematical formulations, cannot meet the real-time demand. Deep reinforcement learning (DRL) offers an alternative by utilizing offline training with distribution network simulators and then executing online without computation. However, DRL algorithms fail to enforce voltage magnitude constraints during training and testing, potentially leading to serious operational violations. To tackle these challenges, we introduce a novel safe-guaranteed reinforcement learning algorithm, the DistFlow safe reinforcement learning (DF-SRL), designed specifically for real-time voltage magnitude regulation in distribution networks. The DF-SRL algorithm incorporates a DistFlow linearization to construct an expert-knowledge-based safety layer. Subsequently, the DF-SRL algorithm overlays this safety layer on top of the agent policy, recalibrating unsafe actions to safe domains through a quadratic programming formulation. Simulation results show the DF-SRL algorithm consistently ensures voltage magnitude constraints during training and real-time operation (test) phases, achieving faster convergence and higher performance, which differentiates it apart from (safe) DRL benchmark algorithms.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"300-311"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648969","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648969/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of distributed energy resources (DERs) has escalated the challenge of voltage magnitude regulation in distribution networks. Model-based approaches, which rely on complex sequential mathematical formulations, cannot meet the real-time demand. Deep reinforcement learning (DRL) offers an alternative by utilizing offline training with distribution network simulators and then executing online without computation. However, DRL algorithms fail to enforce voltage magnitude constraints during training and testing, potentially leading to serious operational violations. To tackle these challenges, we introduce a novel safe-guaranteed reinforcement learning algorithm, the DistFlow safe reinforcement learning (DF-SRL), designed specifically for real-time voltage magnitude regulation in distribution networks. The DF-SRL algorithm incorporates a DistFlow linearization to construct an expert-knowledge-based safety layer. Subsequently, the DF-SRL algorithm overlays this safety layer on top of the agent policy, recalibrating unsafe actions to safe domains through a quadratic programming formulation. Simulation results show the DF-SRL algorithm consistently ensures voltage magnitude constraints during training and real-time operation (test) phases, achieving faster convergence and higher performance, which differentiates it apart from (safe) DRL benchmark algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信