Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara
{"title":"DistFlow Safe Reinforcement Learning Algorithm for Voltage Magnitude Regulation in Distribution Networks","authors":"Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara","doi":"10.35833/MPCE.2024.000253","DOIUrl":null,"url":null,"abstract":"The integration of distributed energy resources (DERs) has escalated the challenge of voltage magnitude regulation in distribution networks. Model-based approaches, which rely on complex sequential mathematical formulations, cannot meet the real-time demand. Deep reinforcement learning (DRL) offers an alternative by utilizing offline training with distribution network simulators and then executing online without computation. However, DRL algorithms fail to enforce voltage magnitude constraints during training and testing, potentially leading to serious operational violations. To tackle these challenges, we introduce a novel safe-guaranteed reinforcement learning algorithm, the DistFlow safe reinforcement learning (DF-SRL), designed specifically for real-time voltage magnitude regulation in distribution networks. The DF-SRL algorithm incorporates a DistFlow linearization to construct an expert-knowledge-based safety layer. Subsequently, the DF-SRL algorithm overlays this safety layer on top of the agent policy, recalibrating unsafe actions to safe domains through a quadratic programming formulation. Simulation results show the DF-SRL algorithm consistently ensures voltage magnitude constraints during training and real-time operation (test) phases, achieving faster convergence and higher performance, which differentiates it apart from (safe) DRL benchmark algorithms.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"300-311"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648969","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648969/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of distributed energy resources (DERs) has escalated the challenge of voltage magnitude regulation in distribution networks. Model-based approaches, which rely on complex sequential mathematical formulations, cannot meet the real-time demand. Deep reinforcement learning (DRL) offers an alternative by utilizing offline training with distribution network simulators and then executing online without computation. However, DRL algorithms fail to enforce voltage magnitude constraints during training and testing, potentially leading to serious operational violations. To tackle these challenges, we introduce a novel safe-guaranteed reinforcement learning algorithm, the DistFlow safe reinforcement learning (DF-SRL), designed specifically for real-time voltage magnitude regulation in distribution networks. The DF-SRL algorithm incorporates a DistFlow linearization to construct an expert-knowledge-based safety layer. Subsequently, the DF-SRL algorithm overlays this safety layer on top of the agent policy, recalibrating unsafe actions to safe domains through a quadratic programming formulation. Simulation results show the DF-SRL algorithm consistently ensures voltage magnitude constraints during training and real-time operation (test) phases, achieving faster convergence and higher performance, which differentiates it apart from (safe) DRL benchmark algorithms.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.