A Continuous Sliding Mode Current Control Based on the Sensitivity Theory for PMSM Drives

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Elia Brescia;Massimo Tipaldi;Francesco Torelli;Paolo Roberto Massenio;Luigi Pio Savastio;Giuseppe Leonardo Cascella;Enrico De Tuglie
{"title":"A Continuous Sliding Mode Current Control Based on the Sensitivity Theory for PMSM Drives","authors":"Elia Brescia;Massimo Tipaldi;Francesco Torelli;Paolo Roberto Massenio;Luigi Pio Savastio;Giuseppe Leonardo Cascella;Enrico De Tuglie","doi":"10.1109/OJIA.2025.3526628","DOIUrl":null,"url":null,"abstract":"Sliding mode controllers (SMCs) are commonly used in permanent-magnet synchronous machines (PMSMs) for current control due to their robustness and simplicity. However, high gains used in traditional discontinuous SMC implementations can induce chattering. To address this, disturbance observers are employed to maintain robustness without resorting to high gains. This article introduces a novel continuous asymptotic SMC method for PMSM currents that avoids the need for disturbance observers, resulting in reduced complexity and tuning efforts. The control laws of the two <inline-formula><tex-math>$dq$</tex-math></inline-formula>-axes currents are obtained through the sensitivity of the tracking errors with respect to the controller outputs. The robustness and convergence properties of the proposed control laws are theoretically studied using the Lyapunov approach. Numerical simulations are used to evaluate the performance and robustness of the proposed controller, followed by experiments to compare it to a discontinuous terminal SMC with and without a disturbance observer. The results clearly demonstrate the superiority of the proposed controller that ensures fast convergence, low chattering, and high robustness to parameter variations without requiring the design of additional disturbance observers.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"48-58"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10830512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10830512/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sliding mode controllers (SMCs) are commonly used in permanent-magnet synchronous machines (PMSMs) for current control due to their robustness and simplicity. However, high gains used in traditional discontinuous SMC implementations can induce chattering. To address this, disturbance observers are employed to maintain robustness without resorting to high gains. This article introduces a novel continuous asymptotic SMC method for PMSM currents that avoids the need for disturbance observers, resulting in reduced complexity and tuning efforts. The control laws of the two $dq$-axes currents are obtained through the sensitivity of the tracking errors with respect to the controller outputs. The robustness and convergence properties of the proposed control laws are theoretically studied using the Lyapunov approach. Numerical simulations are used to evaluate the performance and robustness of the proposed controller, followed by experiments to compare it to a discontinuous terminal SMC with and without a disturbance observer. The results clearly demonstrate the superiority of the proposed controller that ensures fast convergence, low chattering, and high robustness to parameter variations without requiring the design of additional disturbance observers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信