SPAM: Streamlined Prefetcher-Aware Multi-Threaded Cache Covert-Channel Attack

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
E. Kritheesh;Biswabandan Panda
{"title":"SPAM: Streamlined Prefetcher-Aware Multi-Threaded Cache Covert-Channel Attack","authors":"E. Kritheesh;Biswabandan Panda","doi":"10.1109/LCA.2025.3529213","DOIUrl":null,"url":null,"abstract":"Last-level cache (LLC) covert-channels exploit the cache timing differences to transmit information. In recent works, the attacks rely on a single sender and a single receiver. Streamline is the state-of-the-art cache covert channel attack that uses a shared array of addresses mapped to the payload bits, allowing parallelization of the encoding and decoding of bits. As multi-core systems are ubiquitous, multiple senders and receivers can be used to create a high bandwidth cache covert channel. However, this is not the case, and the bandwidth per thread is limited by various factors. We extend Streamline to a multi-threaded Streamline, where the senders buffer a few thousand bits at the LLC for the receivers to decode. We observe that these buffered bits are prone to eviction by the co-running processes before they are decoded. We propose SPAM, a multi-threaded covert-channel at the LLC. SPAM shows that fewer but faster senders must encode for more receivers to reduce this time frame. This ensures resilience to noise coming from cache activities of co-running applications. SPAM uses two different access patterns for the sender(s) and the receiver(s). The sender access pattern of the addresses is modified to leverage the hardware prefetchers to accelerate the loads while encoding. The receiver access pattern circumvents the hardware prefetchers for accurate load latency measurements. We demonstrate SPAM on a six-core (12-threaded) system, achieving a bit-rate of 12.21 MB/s at an error rate of 9.02% which is an improvement of over 70% over the state-of-the-art multi-threaded Streamline for comparable error rates when 50% of the co-running threads stress the cache system.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"25-28"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841844/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Last-level cache (LLC) covert-channels exploit the cache timing differences to transmit information. In recent works, the attacks rely on a single sender and a single receiver. Streamline is the state-of-the-art cache covert channel attack that uses a shared array of addresses mapped to the payload bits, allowing parallelization of the encoding and decoding of bits. As multi-core systems are ubiquitous, multiple senders and receivers can be used to create a high bandwidth cache covert channel. However, this is not the case, and the bandwidth per thread is limited by various factors. We extend Streamline to a multi-threaded Streamline, where the senders buffer a few thousand bits at the LLC for the receivers to decode. We observe that these buffered bits are prone to eviction by the co-running processes before they are decoded. We propose SPAM, a multi-threaded covert-channel at the LLC. SPAM shows that fewer but faster senders must encode for more receivers to reduce this time frame. This ensures resilience to noise coming from cache activities of co-running applications. SPAM uses two different access patterns for the sender(s) and the receiver(s). The sender access pattern of the addresses is modified to leverage the hardware prefetchers to accelerate the loads while encoding. The receiver access pattern circumvents the hardware prefetchers for accurate load latency measurements. We demonstrate SPAM on a six-core (12-threaded) system, achieving a bit-rate of 12.21 MB/s at an error rate of 9.02% which is an improvement of over 70% over the state-of-the-art multi-threaded Streamline for comparable error rates when 50% of the co-running threads stress the cache system.
垃圾邮件:精简的预取器感知多线程缓存转换通道攻击
最后一级缓存(LLC)转换通道利用缓存时间差异来传输信息。在最近的研究中,攻击依赖于单个发送者和单个接收者。流线是最先进的缓存隐蔽通道攻击,它使用映射到有效载荷位的共享地址数组,允许并行编码和解码位。由于多核系统的普遍存在,可以使用多个发送方和接收方来创建高带宽缓存隐蔽信道。然而,事实并非如此,每个线程的带宽受到各种因素的限制。我们将流线扩展为多线程流线,其中发送方在LLC缓冲几千位以供接收方解码。我们观察到,这些缓冲位在解码之前容易被共同运行的进程驱逐。我们提出了SPAM, LLC的一个多线程转换通道。SPAM表明,更少但更快的发送方必须为更多的接收方编码,以减少这个时间框架。这确保了对来自共同运行的应用程序的缓存活动的噪声的弹性。SPAM对发送方和接收方使用两种不同的访问模式。修改地址的发送方访问模式,以利用硬件预取器在编码时加速加载。接收器访问模式绕过硬件预取器,以获得准确的负载延迟测量。我们在一个六核(12线程)系统上演示了SPAM,实现了12.21 MB/s的比特率,错误率为9.02%,当50%的共同运行线程对缓存系统造成压力时,这比最先进的多线程streamlined的错误率提高了70%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信