Adaptive sliding mode control of petrochemical flare combustion process based on radial basis function network

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jiahui Liu , Nan Guo , Yixin Peng , Wenlu Li , Junfei Qiao , Xiaolong Gao , Wei Xiong
{"title":"Adaptive sliding mode control of petrochemical flare combustion process based on radial basis function network","authors":"Jiahui Liu ,&nbsp;Nan Guo ,&nbsp;Yixin Peng ,&nbsp;Wenlu Li ,&nbsp;Junfei Qiao ,&nbsp;Xiaolong Gao ,&nbsp;Wei Xiong","doi":"10.1016/j.cjche.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares. Due to the complex and variable composition of the waste gas they handle, the combustion environment is severely affected by meteorological conditions. Key process parameters such as intake composition, flow rate, and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability. As a result, the control methods for these flares are limited, leading to poor control effectiveness. To address this issue, this paper proposes an adaptive sliding mode control method based on the radial basis function (RBF) network. Firstly, the operational characteristics of the petrochemical flare combustion process are analyzed, and a control model for the combustion process is established based on carbon dioxide detection. Secondly, an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system. Finally, by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law, fast and stable control of the flare combustion state is achieved. Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state, and the adaptive law also accomplishes system identification.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"76 ","pages":"Pages 318-326"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100495412400329X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares. Due to the complex and variable composition of the waste gas they handle, the combustion environment is severely affected by meteorological conditions. Key process parameters such as intake composition, flow rate, and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability. As a result, the control methods for these flares are limited, leading to poor control effectiveness. To address this issue, this paper proposes an adaptive sliding mode control method based on the radial basis function (RBF) network. Firstly, the operational characteristics of the petrochemical flare combustion process are analyzed, and a control model for the combustion process is established based on carbon dioxide detection. Secondly, an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system. Finally, by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law, fast and stable control of the flare combustion state is achieved. Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state, and the adaptive law also accomplishes system identification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信