Application of GIS-based multi-criteria decision analysis of hydro-geomorphological factors for flash flood susceptibility mapping in Bangladesh

Q1 Environmental Science
Raihan Riaz , Md. Mohiuddin
{"title":"Application of GIS-based multi-criteria decision analysis of hydro-geomorphological factors for flash flood susceptibility mapping in Bangladesh","authors":"Raihan Riaz ,&nbsp;Md. Mohiuddin","doi":"10.1016/j.watcyc.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Flash floods are one of the most prevalent natural disasters, triggering deadly damage to homesteads, crops, infrastructure, road networks, communications, and the natural environment in the <em>Haor</em> (Wetland) region of Bangladesh. The purpose of the study aims to identify eleven (11) hydro-geomorphological driving factors, namely elevation, slope, aspect, rainfall, land use and land cover (LULC), lithology, soil type, topographic wetness index (TWI), Normalized Difference Vegetation Index (NDVI), distance from the river, and drainage density, which are being explored for mapping flood-prone areas. This research has produced a flash flood susceptibility map using the Analytical Hierarchy Process (AHP) and Analytical Network Process (ANP), which are interactive decision-making approaches under multi-criteria decision analysis (MCDA) in ArcGIS 10.8. The findings of this study showed that the susceptibility to flood hazards differs significantly among the seven <em>Haor</em> districts. As a result of the ANP and AHP, a more significant proportion of the <em>Haor</em> region is moderately susceptible to flooding (8685.09–9275.15 sq. km.), whereas 35.34 %–38.32 % (7069.70–7668.67 sq. km.) accounts for high susceptible to flooding. Furthermore, 200 flood locations were identified in the northeast Haor region, where 140 (70 %) randomly selected floods were used for training, and the remaining 60 (30 %) were employed for validation purposes. The validation results showed that the AHP model had greater prediction accuracy (the area under the receiver operating curve (AUROC) = 92.1 %) than the ANP (AUROC = 88.5 %) model. Therefore, the study findings can be helpful for researchers, academics, policymakers, and planners for sustainable flood mitigation strategies, particularly in <em>Haor</em> areas.</div></div>","PeriodicalId":34143,"journal":{"name":"Water Cycle","volume":"6 ","pages":"Pages 13-27"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Cycle","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666445324000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Flash floods are one of the most prevalent natural disasters, triggering deadly damage to homesteads, crops, infrastructure, road networks, communications, and the natural environment in the Haor (Wetland) region of Bangladesh. The purpose of the study aims to identify eleven (11) hydro-geomorphological driving factors, namely elevation, slope, aspect, rainfall, land use and land cover (LULC), lithology, soil type, topographic wetness index (TWI), Normalized Difference Vegetation Index (NDVI), distance from the river, and drainage density, which are being explored for mapping flood-prone areas. This research has produced a flash flood susceptibility map using the Analytical Hierarchy Process (AHP) and Analytical Network Process (ANP), which are interactive decision-making approaches under multi-criteria decision analysis (MCDA) in ArcGIS 10.8. The findings of this study showed that the susceptibility to flood hazards differs significantly among the seven Haor districts. As a result of the ANP and AHP, a more significant proportion of the Haor region is moderately susceptible to flooding (8685.09–9275.15 sq. km.), whereas 35.34 %–38.32 % (7069.70–7668.67 sq. km.) accounts for high susceptible to flooding. Furthermore, 200 flood locations were identified in the northeast Haor region, where 140 (70 %) randomly selected floods were used for training, and the remaining 60 (30 %) were employed for validation purposes. The validation results showed that the AHP model had greater prediction accuracy (the area under the receiver operating curve (AUROC) = 92.1 %) than the ANP (AUROC = 88.5 %) model. Therefore, the study findings can be helpful for researchers, academics, policymakers, and planners for sustainable flood mitigation strategies, particularly in Haor areas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Cycle
Water Cycle Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
20
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信