Charlotte Catrouillet , Marc F. Benedetti , Alexandre Gelabert , Eric van Hullebusch , Rémi Marsac
{"title":"The underestimated and important role of thiol moieties in predicting the fate of toxic metals in the environment","authors":"Charlotte Catrouillet , Marc F. Benedetti , Alexandre Gelabert , Eric van Hullebusch , Rémi Marsac","doi":"10.1016/j.cocis.2024.101888","DOIUrl":null,"url":null,"abstract":"<div><div>Studying the interactions between metals and thiol moieties in natural systems is challenging, although they are of major importance for some (ultra)trace elements (e.g. Hg, Cu, Pt). A major current bottleneck is the development of accurate preservation and detection methods. Based on our current knowledge, thiol moieties are abundant in reduced organic waters, where thiolation of natural organic matter (NOM) occurs, as well as in metal-enriched environments, where organisms secrete thiol moieties. Depending on their affinity and their redox potential, metals complexed to thiolated NOM can be reduced and even transformed into sulfur nanoparticles over time. Such mechanisms are not properly considered in currently used biogeochemical models, explaining why the fate of metals in the environment is not well predicted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101888"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424001067","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the interactions between metals and thiol moieties in natural systems is challenging, although they are of major importance for some (ultra)trace elements (e.g. Hg, Cu, Pt). A major current bottleneck is the development of accurate preservation and detection methods. Based on our current knowledge, thiol moieties are abundant in reduced organic waters, where thiolation of natural organic matter (NOM) occurs, as well as in metal-enriched environments, where organisms secrete thiol moieties. Depending on their affinity and their redox potential, metals complexed to thiolated NOM can be reduced and even transformed into sulfur nanoparticles over time. Such mechanisms are not properly considered in currently used biogeochemical models, explaining why the fate of metals in the environment is not well predicted.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.