Causal wavelet analysis of the Bitcoin price dynamics

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jose Alvarez-Ramirez, Gilberto Espinosa-Paredes, E. Jaime Vernon-Carter
{"title":"Causal wavelet analysis of the Bitcoin price dynamics","authors":"Jose Alvarez-Ramirez,&nbsp;Gilberto Espinosa-Paredes,&nbsp;E. Jaime Vernon-Carter","doi":"10.1016/j.physa.2024.130307","DOIUrl":null,"url":null,"abstract":"<div><div>This study employed wavelet analysis to investigate Bitcoin price dynamics from 2014 to 2024. Unlike existing research, which relies on bidirectional wavelet functions, our approach utilized causal wavelet analysis. This method ensures that wavelet basis functions only account for past values, reflecting the impact of past prices on present prices while maintaining causality. The complex Morlet wavelet revealed that market complexity varies over time and scale. Our results showed that regions of high wavelet power coincide with bearish market phases leading to historical price maxima. The phase scalogram indicated that price return dynamics are primarily dominated by even components, reflecting fluctuation patterns across a wide range of oscillation frequencies. In a secondary analysis, we modified the wavelet analysis by decoupling the oscillation scale and the modulation (memory) function scale. This allowed us to estimate the decaying memory characteristic time scale. The resulting scalograms exhibited sharper magnitude and phase patterns, suggesting that Bitcoin price return dynamics are influenced by long-run memory. Our findings conclude that incorporating causality and long-run memory into wavelet analysis provides a more accurate characterization of cryptocurrency price dynamics.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"658 ","pages":"Article 130307"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124008173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed wavelet analysis to investigate Bitcoin price dynamics from 2014 to 2024. Unlike existing research, which relies on bidirectional wavelet functions, our approach utilized causal wavelet analysis. This method ensures that wavelet basis functions only account for past values, reflecting the impact of past prices on present prices while maintaining causality. The complex Morlet wavelet revealed that market complexity varies over time and scale. Our results showed that regions of high wavelet power coincide with bearish market phases leading to historical price maxima. The phase scalogram indicated that price return dynamics are primarily dominated by even components, reflecting fluctuation patterns across a wide range of oscillation frequencies. In a secondary analysis, we modified the wavelet analysis by decoupling the oscillation scale and the modulation (memory) function scale. This allowed us to estimate the decaying memory characteristic time scale. The resulting scalograms exhibited sharper magnitude and phase patterns, suggesting that Bitcoin price return dynamics are influenced by long-run memory. Our findings conclude that incorporating causality and long-run memory into wavelet analysis provides a more accurate characterization of cryptocurrency price dynamics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信