Machine learning framework for sustainable traffic management and safety in AlKharj city

IF 3.3 2区 社会学 Q2 ENVIRONMENTAL SCIENCES
Ali Louati
{"title":"Machine learning framework for sustainable traffic management and safety in AlKharj city","authors":"Ali Louati","doi":"10.1016/j.sftr.2024.100407","DOIUrl":null,"url":null,"abstract":"<div><div>As urban areas expand, cities face increasing challenges related to traffic congestion, accident rates, and environmental impact, all of which hinder sustainable growth and public safety. In AlKharj, a vibrant governorate in Riyadh, Saudi Arabia, traditional traffic management systems struggle to address these issues effectively. To tackle these challenges, we propose an Artificial Intelligence (AI) and Machine Learning (ML) framework aimed at transforming transportation infrastructure towards greater sustainability and resilience. This study highlights AI-driven advancements in traffic management, accident prevention, and energy optimization for AlKharj’s growing urban environment. We develop predictive models for accident hotspots, adaptive traffic systems, and fuel-efficient routing. Using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs), we forecast accident trends and energy consumption, providing strategic insights for urban planning. Our findings demonstrate the potential of AI to enhance efficiency, safety, and environmental sustainability in transportation, setting a benchmark for future sustainable urban mobility initiatives worldwide.</div></div>","PeriodicalId":34478,"journal":{"name":"Sustainable Futures","volume":"9 ","pages":"Article 100407"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Futures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666188824002557","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As urban areas expand, cities face increasing challenges related to traffic congestion, accident rates, and environmental impact, all of which hinder sustainable growth and public safety. In AlKharj, a vibrant governorate in Riyadh, Saudi Arabia, traditional traffic management systems struggle to address these issues effectively. To tackle these challenges, we propose an Artificial Intelligence (AI) and Machine Learning (ML) framework aimed at transforming transportation infrastructure towards greater sustainability and resilience. This study highlights AI-driven advancements in traffic management, accident prevention, and energy optimization for AlKharj’s growing urban environment. We develop predictive models for accident hotspots, adaptive traffic systems, and fuel-efficient routing. Using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs), we forecast accident trends and energy consumption, providing strategic insights for urban planning. Our findings demonstrate the potential of AI to enhance efficiency, safety, and environmental sustainability in transportation, setting a benchmark for future sustainable urban mobility initiatives worldwide.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Futures
Sustainable Futures Social Sciences-Sociology and Political Science
CiteScore
9.30
自引率
1.80%
发文量
34
审稿时长
71 days
期刊介绍: Sustainable Futures: is a journal focused on the intersection of sustainability, environment and technology from various disciplines in social sciences, and their larger implications for corporation, government, education institutions, regions and society both at present and in the future. It provides an advanced platform for studies related to sustainability and sustainable development in society, economics, environment, and culture. The scope of the journal is broad and encourages interdisciplinary research, as well as welcoming theoretical and practical research from all methodological approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信