La Ode Agus Salim , Muhammad Nurdin , Maulidiyah Maulidiyah , Nohong Nohong
{"title":"Advanced TiO2-ZnO/graphene hybrid nanocomposite for ultra-sensitive electrochemical detection of fipronil pesticide","authors":"La Ode Agus Salim , Muhammad Nurdin , Maulidiyah Maulidiyah , Nohong Nohong","doi":"10.1016/j.enmm.2024.101031","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing use of fipronil, a phenylpyrazole insecticide with known toxicity and endocrine-disrupting effects, poses significant environmental and health risks due to its persistence in agricultural products and ecosystems. This study presents the development of a novel TiO<sub>2</sub>-ZnO/graphene (GTZ) hybrid nanocomposite electrode for ultra-sensitive electrochemical detection of fipronil. The GTZ nanocomposite was synthesized using a microwave-assisted technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). SEM results showed that TiO<sub>2</sub> and ZnO nanoparticles were well dispersed in the graphene layer. XRD diffractograms confirmed the presence of the anatase TiO<sub>2</sub> phase and Wurtzite ZnO phase in GTZ nanocomposites. FTIR analysis revealed the presence of oxygen-containing functional groups, Ti-O and Zn-O bonds, indicating successful modification of graphene. Cyclic voltammetry was employed to evaluate the sensing capabilities of the GTZ electrode, demonstrating a linear response to fipronil concentrations as low as 0.0023 µg/L, with a high reproducibility (RSD 1.77 %). The electrode’s enhanced sensitivity can be attributed to the synergistic interaction between TiO<sub>2</sub>-ZnO nanoparticles and graphene, providing a large electroactive surface area and improved electron transfer kinetics. This study confirms the potential of GTZ nanocomposite electrodes as a cost-effective and portable platform for real-time monitoring of fipronil residues in environmental and agricultural samples.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101031"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing use of fipronil, a phenylpyrazole insecticide with known toxicity and endocrine-disrupting effects, poses significant environmental and health risks due to its persistence in agricultural products and ecosystems. This study presents the development of a novel TiO2-ZnO/graphene (GTZ) hybrid nanocomposite electrode for ultra-sensitive electrochemical detection of fipronil. The GTZ nanocomposite was synthesized using a microwave-assisted technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). SEM results showed that TiO2 and ZnO nanoparticles were well dispersed in the graphene layer. XRD diffractograms confirmed the presence of the anatase TiO2 phase and Wurtzite ZnO phase in GTZ nanocomposites. FTIR analysis revealed the presence of oxygen-containing functional groups, Ti-O and Zn-O bonds, indicating successful modification of graphene. Cyclic voltammetry was employed to evaluate the sensing capabilities of the GTZ electrode, demonstrating a linear response to fipronil concentrations as low as 0.0023 µg/L, with a high reproducibility (RSD 1.77 %). The electrode’s enhanced sensitivity can be attributed to the synergistic interaction between TiO2-ZnO nanoparticles and graphene, providing a large electroactive surface area and improved electron transfer kinetics. This study confirms the potential of GTZ nanocomposite electrodes as a cost-effective and portable platform for real-time monitoring of fipronil residues in environmental and agricultural samples.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation