A comprehensive study on silica nanoparticles: Green synthesis and photodegradation of organic dyes

Q1 Environmental Science
Suman , Gita Rani , Siddharth , Sakshi Choudhary , Rachna Ahlawat
{"title":"A comprehensive study on silica nanoparticles: Green synthesis and photodegradation of organic dyes","authors":"Suman ,&nbsp;Gita Rani ,&nbsp;Siddharth ,&nbsp;Sakshi Choudhary ,&nbsp;Rachna Ahlawat","doi":"10.1016/j.enmm.2025.101049","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic dyes have the potential to negatively affect aquatic ecosystems by lowering oxygen levels, interfering with photosynthesis, and decreasing sunlight penetration, all of which are hazardous for aquatic life. Many kinds of nanoparticles, including metal oxides, metal organic frameworks, silver and gold nanoparticles, are used to break down dye, but they still have certain drawbacks, including accumulation, stability issues, expense, and harmful chemical waste. Therefore, among the several kinds of green sources, green synthesis of silica nanoparticles is a novel and environmentally benign technique that has attracted a lot of interest due to its potential for environmental remediation, especially in the degradation of dyes. High surface area and porosity, two distinctive features of the produced silica nanoparticles, increase their catalytic activity in the degradation of dyes. Green synthesis of SNPs from different sources by following various methods along with their structure, particle size, surface area, and purity has been reported by multiple studies. The excellent photodegradation capabilities of SNPs and their composites under different light sources (such as sunlight, LED lamp, xenon lamp, and mercury lamp), along with the reaction time, reaction kinetics, and pH condition, have been documented by multiple studies. This thorough study aims to support researchers with a better understanding of this cost-effective, simple, and eco-friendly research area and to follow this to synthesize SNPs for future studies.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101049"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic dyes have the potential to negatively affect aquatic ecosystems by lowering oxygen levels, interfering with photosynthesis, and decreasing sunlight penetration, all of which are hazardous for aquatic life. Many kinds of nanoparticles, including metal oxides, metal organic frameworks, silver and gold nanoparticles, are used to break down dye, but they still have certain drawbacks, including accumulation, stability issues, expense, and harmful chemical waste. Therefore, among the several kinds of green sources, green synthesis of silica nanoparticles is a novel and environmentally benign technique that has attracted a lot of interest due to its potential for environmental remediation, especially in the degradation of dyes. High surface area and porosity, two distinctive features of the produced silica nanoparticles, increase their catalytic activity in the degradation of dyes. Green synthesis of SNPs from different sources by following various methods along with their structure, particle size, surface area, and purity has been reported by multiple studies. The excellent photodegradation capabilities of SNPs and their composites under different light sources (such as sunlight, LED lamp, xenon lamp, and mercury lamp), along with the reaction time, reaction kinetics, and pH condition, have been documented by multiple studies. This thorough study aims to support researchers with a better understanding of this cost-effective, simple, and eco-friendly research area and to follow this to synthesize SNPs for future studies.

Abstract Image

二氧化硅纳米颗粒的综合研究:绿色合成与有机染料的光降解
合成染料有可能通过降低氧气水平、干扰光合作用和减少阳光穿透来对水生生态系统产生负面影响,所有这些对水生生物都是有害的。许多种类的纳米颗粒,包括金属氧化物、金属有机框架、银和金纳米颗粒,被用于分解染料,但它们仍然有一定的缺点,包括积累、稳定性问题、费用和有害的化学废物。因此,在几种绿色来源中,二氧化硅纳米颗粒的绿色合成是一种新型的环保技术,由于其在环境修复特别是染料降解方面的潜力而引起了人们的广泛关注。高表面积和孔隙率是所制备的二氧化硅纳米颗粒的两个显著特征,增加了它们对染料降解的催化活性。多种研究报道了不同来源、不同方法、不同结构、不同粒径、不同表面积、不同纯度的snp的绿色合成。在不同的光源(如太阳光、LED灯、氙灯和汞灯)、反应时间、反应动力学和pH条件下,snp及其复合材料具有优异的光降解能力,已被多项研究证实。这项深入的研究旨在帮助研究人员更好地了解这一经济、简单、环保的研究领域,并以此为基础合成snp以进行未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信