{"title":"Globally conservative weak solutions for a class of two-component nonlinear dispersive wave equations beyond wave breaking","authors":"Yonghui Zhou , Xiaowan Li , Shuguan Ji","doi":"10.1016/j.jde.2025.01.089","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that the existence of globally conservative weak solutions for a class of two-component nonlinear dispersive wave system of the equations beyond wave breaking. We first introduce a new set of independent and dependent variables in connection with smooth solutions, and transform the system into an equivalent semi-linear system. We then establish the global existence of solutions for the semi-linear system via the standard theory of ordinary differential equations. Finally, by the inverse transformation method, we prove the existence of the globally conservative weak solution for the original system.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 538-559"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that the existence of globally conservative weak solutions for a class of two-component nonlinear dispersive wave system of the equations beyond wave breaking. We first introduce a new set of independent and dependent variables in connection with smooth solutions, and transform the system into an equivalent semi-linear system. We then establish the global existence of solutions for the semi-linear system via the standard theory of ordinary differential equations. Finally, by the inverse transformation method, we prove the existence of the globally conservative weak solution for the original system.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics