On Dirichlet eigenvalues of measure differential equations with indefinite weight measures

IF 2.3 2区 数学 Q1 MATHEMATICS
Xiaoxue Guo, Zhiyuan Wen
{"title":"On Dirichlet eigenvalues of measure differential equations with indefinite weight measures","authors":"Xiaoxue Guo,&nbsp;Zhiyuan Wen","doi":"10.1016/j.jde.2025.01.079","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study Dirichlet eigenvalue problem of the second order measure differential equation with an indefinite weight measure. The main result is a complete description on eigenvalues of the problem. To obtain such a result, we will first establish a sufficient and necessary condition on the existence of the first positive and negative eigenvalues of the problem. Secondly, we will give a fully description on eigenvalues of the problem when the indefinite weight measures are singular measures. Thirdly, by constructing approximating measures and developing some convergence result on eigenvalues, we will prove the main result. Finally, we will propose some optimization problems on the first positive eigenvalue.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 163-193"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625000920","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study Dirichlet eigenvalue problem of the second order measure differential equation with an indefinite weight measure. The main result is a complete description on eigenvalues of the problem. To obtain such a result, we will first establish a sufficient and necessary condition on the existence of the first positive and negative eigenvalues of the problem. Secondly, we will give a fully description on eigenvalues of the problem when the indefinite weight measures are singular measures. Thirdly, by constructing approximating measures and developing some convergence result on eigenvalues, we will prove the main result. Finally, we will propose some optimization problems on the first positive eigenvalue.
不定权测度测度微分方程的狄利克雷特征值
本文研究了具有不定权测度的二阶测度微分方程的Dirichlet特征值问题。主要结果是对问题特征值的完整描述。为了得到这样的结果,我们首先建立问题的第一个正特征值和第一个负特征值存在的充要条件。其次,给出了不确定权测度为奇异测度时问题的特征值的完整描述。第三,通过构造近似测度和发展特征值上的一些收敛性结果,证明了主要结果。最后,我们将提出关于第一个正特征值的一些优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信