Investigation on spreading behavior and influencing parameters of particle-droplet collision

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Jin Hou , Botao Qin , Qun Zhou
{"title":"Investigation on spreading behavior and influencing parameters of particle-droplet collision","authors":"Jin Hou ,&nbsp;Botao Qin ,&nbsp;Qun Zhou","doi":"10.1016/j.powtec.2025.120702","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigated the dynamic wetting characteristics during droplet impact on spherical particle as the main monitoring object, and analyzed the effects of droplet impact velocity, and surface tension on droplet spreading coefficient (Dc) and particle force. The droplet-particle collision condensation test platform designed and constructed in this paper. In addition, a novel particle-droplet collision numerical model was constructed by combining VOF, dynamic mesh and mesh adaptation techniques to assist the research. The results shown that the rate of increase of Dc increased with the increase of the collision velocity. When the collision velocity was less than 1 m/s, the attraction force generated by droplet on particle was greater than the resistance generated by surface tension, which results in adsorption force. The resistance of droplet to particle increased with the increase of velocity, while the effect of adsorption decreased. When the collision velocity exceeded 1 m/s, the effect of adsorption force was negligible, the particle and droplet could not produce adsorption mode of bonding and need to overcome the surface tension for wrapping. Reducing the surface tension could increase the encapsulation speed of the droplet to the particle, for example, the droplet with a surface tension of 28mN/m took only half as long as the surface tension of 76mN/m. The results of this study provide a basic theoretical basis for further exploration of the particle-droplet collision and coalescence mechanism.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"454 ","pages":"Article 120702"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003259102500097X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigated the dynamic wetting characteristics during droplet impact on spherical particle as the main monitoring object, and analyzed the effects of droplet impact velocity, and surface tension on droplet spreading coefficient (Dc) and particle force. The droplet-particle collision condensation test platform designed and constructed in this paper. In addition, a novel particle-droplet collision numerical model was constructed by combining VOF, dynamic mesh and mesh adaptation techniques to assist the research. The results shown that the rate of increase of Dc increased with the increase of the collision velocity. When the collision velocity was less than 1 m/s, the attraction force generated by droplet on particle was greater than the resistance generated by surface tension, which results in adsorption force. The resistance of droplet to particle increased with the increase of velocity, while the effect of adsorption decreased. When the collision velocity exceeded 1 m/s, the effect of adsorption force was negligible, the particle and droplet could not produce adsorption mode of bonding and need to overcome the surface tension for wrapping. Reducing the surface tension could increase the encapsulation speed of the droplet to the particle, for example, the droplet with a surface tension of 28mN/m took only half as long as the surface tension of 76mN/m. The results of this study provide a basic theoretical basis for further exploration of the particle-droplet collision and coalescence mechanism.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信