A characterisation of the triality locally projective graph

IF 0.8 2区 数学 Q2 MATHEMATICS
William Giuliano , Alexander A. Ivanov
{"title":"A characterisation of the triality locally projective graph","authors":"William Giuliano ,&nbsp;Alexander A. Ivanov","doi":"10.1016/j.jalgebra.2024.11.033","DOIUrl":null,"url":null,"abstract":"<div><div>The paper contributes to the classification of locally projective graphs and their locally projective groups of automorphisms. This project aimed to merge sporadic and classical simple groups in a uniform setting. The list of known examples of locally projective groups of automorphisms includes the classical groups<span><span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></mspace><msubsup><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></mspace><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>8</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo><mo>:</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span></span></span> as well as the sporadic simple groups<span><span><span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mn>23</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mn>24</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>H</mi><mi>e</mi><mo>,</mo><mspace></mspace><mi>C</mi><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>C</mi><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>B</mi><mi>M</mi><mo>,</mo><mspace></mspace><mi>M</mi><mo>,</mo></math></span></span></span> where <em>M</em> is the Monster sporadic simple group, the largest and most famous sporadic simple group. The locally projective graph for the Monster gives an important insight in the structure of 2-local subgroups in the Monster. The list also includes some remarkable non-split extensions which probably would not be discovered otherwise:<span><span><span><math><msup><mrow><mn>3</mn></mrow><mrow><mn>7</mn></mrow></msup><mo>⋅</mo><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></mspace><msup><mrow><mn>3</mn></mrow><mrow><mn>23</mn></mrow></msup><mo>⋅</mo><mi>C</mi><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mn>3</mn></mrow><mrow><mn>4371</mn></mrow></msup><mo>⋅</mo><mi>B</mi><mi>M</mi><mo>.</mo></math></span></span></span> This article focuses on the locally projective graph constructed by Giudici, Li and Praeger from the triality of the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-geometry over <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. We call it the <em>triality graph</em> and prove that (up to coverings and quotients) it is the unique thick locally projective graph in dimension 3 where (a) the stabiliser of a plane realises a completion of the Goldschmidt amalgam<span><span><span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup><mo>=</mo><mo>{</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>×</mo><mn>2</mn><mo>}</mo><mo>,</mo></math></span></span></span> and (b) the vertex-wise stabiliser of the ball of radius 2 centred at a vertex in the collinearity graph has order 8. In the triality graph itself the completion of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> is the wreath product <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≀</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"667 ","pages":"Pages 305-324"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006811","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper contributes to the classification of locally projective graphs and their locally projective groups of automorphisms. This project aimed to merge sporadic and classical simple groups in a uniform setting. The list of known examples of locally projective groups of automorphisms includes the classical groupsLn(2),Sp2n(2),O2n+(2),Ω8+(2):S3,G2(3) as well as the sporadic simple groupsM22,M23,M24,He,Co2,Co1,J4,BM,M, where M is the Monster sporadic simple group, the largest and most famous sporadic simple group. The locally projective graph for the Monster gives an important insight in the structure of 2-local subgroups in the Monster. The list also includes some remarkable non-split extensions which probably would not be discovered otherwise:37Sp6(2),323Co2,34371BM. This article focuses on the locally projective graph constructed by Giudici, Li and Praeger from the triality of the D4-geometry over GF(2). We call it the triality graph and prove that (up to coverings and quotients) it is the unique thick locally projective graph in dimension 3 where (a) the stabiliser of a plane realises a completion of the Goldschmidt amalgamG24={D8×S3,S4×2}, and (b) the vertex-wise stabiliser of the ball of radius 2 centred at a vertex in the collinearity graph has order 8. In the triality graph itself the completion of G24 is the wreath product S3S3.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信