On the representation theory of Schur algebras in type B

IF 0.8 2区 数学 Q2 MATHEMATICS
Dinushi Munasinghe , Ben Webster
{"title":"On the representation theory of Schur algebras in type B","authors":"Dinushi Munasinghe ,&nbsp;Ben Webster","doi":"10.1016/j.jalgebra.2024.12.014","DOIUrl":null,"url":null,"abstract":"<div><div>We study the representation theory of the type B Schur algebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> with unequal parameters introduced by Lai and Luo. For generic values of <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, this algebra is semi-simple and Morita equivalent to the type B Hecke algebra, but for special values, its category of modules is more complicated. We study this representation theory by comparison with the cyclotomic <em>q</em>-Schur algebra of Dipper, James, and Mathas, and use this to construct a cellular algebra structure on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>.</div><div>This allows us to index the simple <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>-modules as a subset of the set of bipartitions of <em>n</em>. For <em>m</em> large, this will be all bipartitions of <em>n</em> if and only if <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is quasi-hereditary. In this case, the algebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is Morita equivalent to the cyclotomic <em>q</em>-Schur algebra. We prove a modified version of a conjecture of Lai, Nakano, and Xiang giving the values of <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> where this holds: if <em>m</em> is large and odd, <span><math><mi>Q</mi><mo>≠</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> for all <em>k</em> satisfying <span><math><mfrac><mrow><mn>4</mn><mo>−</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>k</mi><mo>&lt;</mo><mi>n</mi></math></span>; if <em>m</em> is large and even, <span><math><mi>Q</mi><mo>≠</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> for all <em>k</em> satisfying <span><math><mo>−</mo><mi>n</mi><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><mi>n</mi></math></span>. We also prove two strengthenings of this result: an indexing of the simple modules when <em>q</em> is not a root of unity, and a characterization of the quasi-hereditary blocks of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"667 ","pages":"Pages 211-258"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the representation theory of the type B Schur algebra Ln(m) with unequal parameters introduced by Lai and Luo. For generic values of (Q,q), this algebra is semi-simple and Morita equivalent to the type B Hecke algebra, but for special values, its category of modules is more complicated. We study this representation theory by comparison with the cyclotomic q-Schur algebra of Dipper, James, and Mathas, and use this to construct a cellular algebra structure on Ln(m).
This allows us to index the simple Ln(m)-modules as a subset of the set of bipartitions of n. For m large, this will be all bipartitions of n if and only if Ln(m) is quasi-hereditary. In this case, the algebra Ln(m) is Morita equivalent to the cyclotomic q-Schur algebra. We prove a modified version of a conjecture of Lai, Nakano, and Xiang giving the values of (Q,q) where this holds: if m is large and odd, Qqk for all k satisfying 4n2k<n; if m is large and even, Qqk for all k satisfying n<k<n. We also prove two strengthenings of this result: an indexing of the simple modules when q is not a root of unity, and a characterization of the quasi-hereditary blocks of Ln(m).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信