{"title":"On the representation theory of Schur algebras in type B","authors":"Dinushi Munasinghe , Ben Webster","doi":"10.1016/j.jalgebra.2024.12.014","DOIUrl":null,"url":null,"abstract":"<div><div>We study the representation theory of the type B Schur algebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> with unequal parameters introduced by Lai and Luo. For generic values of <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, this algebra is semi-simple and Morita equivalent to the type B Hecke algebra, but for special values, its category of modules is more complicated. We study this representation theory by comparison with the cyclotomic <em>q</em>-Schur algebra of Dipper, James, and Mathas, and use this to construct a cellular algebra structure on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>.</div><div>This allows us to index the simple <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>-modules as a subset of the set of bipartitions of <em>n</em>. For <em>m</em> large, this will be all bipartitions of <em>n</em> if and only if <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is quasi-hereditary. In this case, the algebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is Morita equivalent to the cyclotomic <em>q</em>-Schur algebra. We prove a modified version of a conjecture of Lai, Nakano, and Xiang giving the values of <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> where this holds: if <em>m</em> is large and odd, <span><math><mi>Q</mi><mo>≠</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> for all <em>k</em> satisfying <span><math><mfrac><mrow><mn>4</mn><mo>−</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>; if <em>m</em> is large and even, <span><math><mi>Q</mi><mo>≠</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> for all <em>k</em> satisfying <span><math><mo>−</mo><mi>n</mi><mo><</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>. We also prove two strengthenings of this result: an indexing of the simple modules when <em>q</em> is not a root of unity, and a characterization of the quasi-hereditary blocks of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>m</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"667 ","pages":"Pages 211-258"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the representation theory of the type B Schur algebra with unequal parameters introduced by Lai and Luo. For generic values of , this algebra is semi-simple and Morita equivalent to the type B Hecke algebra, but for special values, its category of modules is more complicated. We study this representation theory by comparison with the cyclotomic q-Schur algebra of Dipper, James, and Mathas, and use this to construct a cellular algebra structure on .
This allows us to index the simple -modules as a subset of the set of bipartitions of n. For m large, this will be all bipartitions of n if and only if is quasi-hereditary. In this case, the algebra is Morita equivalent to the cyclotomic q-Schur algebra. We prove a modified version of a conjecture of Lai, Nakano, and Xiang giving the values of where this holds: if m is large and odd, for all k satisfying ; if m is large and even, for all k satisfying . We also prove two strengthenings of this result: an indexing of the simple modules when q is not a root of unity, and a characterization of the quasi-hereditary blocks of .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.