Research on resource allocation of hybrid indoor VLC networks

IF 2.2 3区 物理与天体物理 Q2 OPTICS
XiZheng Ke, MengXia Wei, Huanhuan Qin
{"title":"Research on resource allocation of hybrid indoor VLC networks","authors":"XiZheng Ke,&nbsp;MengXia Wei,&nbsp;Huanhuan Qin","doi":"10.1016/j.optcom.2025.131503","DOIUrl":null,"url":null,"abstract":"<div><div>To address the resource allocation (RA) challenge in heterogeneous visible light communication (VLC) networks, this study develops an indoor VLC hybrid system comprising multiple VLC access points (APs), a single radio frequency (RF) access point, and a single infrared (IR) AP. A joint load balancing and power allocation strategy is proposed for the VLC/RF downlink, accompanied by an iterative algorithm and optimization framework tailored for the power allocation subproblem, which allocates power to each AP to maximize data throughput. The algorithm determines optimal power distribution through alternating solutions of dual variables. Furthermore, the effective capacity of a single user with varying quality of service (QoS) requirements in the IR uplink is examined, employing four distinct power control strategies: equal power allocation and Water-Filling algorithm, sub-channel independent optimization algorithm, and sub-channel joint optimization algorithm within simulations. Results indicate that this approach is agnostic to step size or initial variable values while offering enhanced convergence speed and performance compared to traditional subgradient methods. System capacity and fairness are notably improved alongside rapid convergence rates. Considering performance metrics based on system capacity, the sub-channel joint optimization algorithm is the optimal power control strategy.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"578 ","pages":"Article 131503"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825000318","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the resource allocation (RA) challenge in heterogeneous visible light communication (VLC) networks, this study develops an indoor VLC hybrid system comprising multiple VLC access points (APs), a single radio frequency (RF) access point, and a single infrared (IR) AP. A joint load balancing and power allocation strategy is proposed for the VLC/RF downlink, accompanied by an iterative algorithm and optimization framework tailored for the power allocation subproblem, which allocates power to each AP to maximize data throughput. The algorithm determines optimal power distribution through alternating solutions of dual variables. Furthermore, the effective capacity of a single user with varying quality of service (QoS) requirements in the IR uplink is examined, employing four distinct power control strategies: equal power allocation and Water-Filling algorithm, sub-channel independent optimization algorithm, and sub-channel joint optimization algorithm within simulations. Results indicate that this approach is agnostic to step size or initial variable values while offering enhanced convergence speed and performance compared to traditional subgradient methods. System capacity and fairness are notably improved alongside rapid convergence rates. Considering performance metrics based on system capacity, the sub-channel joint optimization algorithm is the optimal power control strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信