Taxonomic and functional diversity of protists in saline and hypersaline lakes in southern Western Siberia, a region strongly affected by climate change

IF 5.1 Q1 ENVIRONMENTAL SCIENCES
Elena A. Gerasimova , Alexander S. Balkin , Vladimir Y. Kataev , Ekaterina S. Filonchikova , Yulia V. Mindolina , Denis V. Tikhonenkov
{"title":"Taxonomic and functional diversity of protists in saline and hypersaline lakes in southern Western Siberia, a region strongly affected by climate change","authors":"Elena A. Gerasimova ,&nbsp;Alexander S. Balkin ,&nbsp;Vladimir Y. Kataev ,&nbsp;Ekaterina S. Filonchikova ,&nbsp;Yulia V. Mindolina ,&nbsp;Denis V. Tikhonenkov","doi":"10.1016/j.watbs.2024.100316","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change has had an unprecedented impact on lake ecosystems around the globe and has both direct and indirect consequences on lake structure and mineralization. These changes are threatening the unique biodiversity that lake ecosystems currently support. Siberia is experiencing one of the greatest impacts of climate change in the world, with exceptional warming in the north and increasing aridity in the south. Lakes in southern West Siberia, including saline and hypersaline waterbodies within endorheic basins, remain unexplored in terms of the biodiversity of the microbial eukaryotes inhabiting them. In this study, we investigated the taxonomic and functional diversity of planktonic protist communities in saline and hypersaline lakes (22–220‰) in southern Western Siberia through Illumina 18S rDNA amplicon sequencing. Taxonomic diversity was represented by the Amoebozoa, Archaeplastida, Cryptista, Excavata, Haptista, Obazoa, Provora, and TSAR supergroups, and varied significantly among lakes of different salinities. Salinity has been shown to be an important determinant that directly influences the composition and uniqueness of protist communities. The co-occurrence network analysis revealed a decrease in the complexity of the network of protist communities with increasing salinity. The taxonomic diversity of protists in lakes determines functional diversity, which is expressed as the relative abundance of free-living heterotrophs, phototrophs, and parasites. Phototrophs dominated the delta-hypersaline waters, and free-living heterotrophs dominated the alpha- and beta-hypersaline lakes. The parasite amplicon sequence variants (ASVs) were affiliated mainly with mixohaline and beta-hypersaline lakes.</div></div>","PeriodicalId":101277,"journal":{"name":"Water Biology and Security","volume":"4 1","pages":"Article 100316"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Biology and Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277273512400088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change has had an unprecedented impact on lake ecosystems around the globe and has both direct and indirect consequences on lake structure and mineralization. These changes are threatening the unique biodiversity that lake ecosystems currently support. Siberia is experiencing one of the greatest impacts of climate change in the world, with exceptional warming in the north and increasing aridity in the south. Lakes in southern West Siberia, including saline and hypersaline waterbodies within endorheic basins, remain unexplored in terms of the biodiversity of the microbial eukaryotes inhabiting them. In this study, we investigated the taxonomic and functional diversity of planktonic protist communities in saline and hypersaline lakes (22–220‰) in southern Western Siberia through Illumina 18S rDNA amplicon sequencing. Taxonomic diversity was represented by the Amoebozoa, Archaeplastida, Cryptista, Excavata, Haptista, Obazoa, Provora, and TSAR supergroups, and varied significantly among lakes of different salinities. Salinity has been shown to be an important determinant that directly influences the composition and uniqueness of protist communities. The co-occurrence network analysis revealed a decrease in the complexity of the network of protist communities with increasing salinity. The taxonomic diversity of protists in lakes determines functional diversity, which is expressed as the relative abundance of free-living heterotrophs, phototrophs, and parasites. Phototrophs dominated the delta-hypersaline waters, and free-living heterotrophs dominated the alpha- and beta-hypersaline lakes. The parasite amplicon sequence variants (ASVs) were affiliated mainly with mixohaline and beta-hypersaline lakes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信