Thomas Loan , Avinash Karpe , Saeid Babaei , Stuart Denman , Chunghong Chen , Matthias Joust , Kristy Lam , Dawar Hussain , Sapna Pillai Vibhakaran , Matthew Callaghan , Abed Chaudhury , Karen Paco , Nigel Tomkins , Tristan Yang , Stephanie Payne , Michael Ayliffe , Ming Luo
{"title":"Biosynthesis of bromoform by Curvularia fungi provides a natural pathway to mitigate enteric methane emissions from ruminants","authors":"Thomas Loan , Avinash Karpe , Saeid Babaei , Stuart Denman , Chunghong Chen , Matthias Joust , Kristy Lam , Dawar Hussain , Sapna Pillai Vibhakaran , Matthew Callaghan , Abed Chaudhury , Karen Paco , Nigel Tomkins , Tristan Yang , Stephanie Payne , Michael Ayliffe , Ming Luo","doi":"10.1016/j.btre.2025.e00876","DOIUrl":null,"url":null,"abstract":"<div><div>The ruminant livestock industry is the largest agricultural emissions source of anthropogenic greenhouse gases, primarily from enteric methane. Several technologies, both natural and synthetic are being investigated to mitigate enteric methane emissions. Macroalgae derived feed ingredients that contain bromoform, a recognised inhibitor of methanogenesis, are an effective natural approach for methane mitigation. However, producing sufficient biomass economically to satisfy the livestock industry at a global scale is challenging. Here we demonstrate that a <em>Curvularia</em> soil fungi isolate can be cultured to produce bromoform and subsequently inhibit methanogenesis in pure cultures of <em>Methanobrevibacter smithii</em> and in mixed cultures of ovine rumen fluid. This highly culturable fungal species produces no known toxins and creates an exciting new, scalable and natural alternative for reducing ruminant livestock emissions.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00876"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
The ruminant livestock industry is the largest agricultural emissions source of anthropogenic greenhouse gases, primarily from enteric methane. Several technologies, both natural and synthetic are being investigated to mitigate enteric methane emissions. Macroalgae derived feed ingredients that contain bromoform, a recognised inhibitor of methanogenesis, are an effective natural approach for methane mitigation. However, producing sufficient biomass economically to satisfy the livestock industry at a global scale is challenging. Here we demonstrate that a Curvularia soil fungi isolate can be cultured to produce bromoform and subsequently inhibit methanogenesis in pure cultures of Methanobrevibacter smithii and in mixed cultures of ovine rumen fluid. This highly culturable fungal species produces no known toxins and creates an exciting new, scalable and natural alternative for reducing ruminant livestock emissions.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.