How do drivers manage speed at tunnel entrances? Insights from uncorrelated grouped random parameters duration models for model invalidation and performance recovery times

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yunjie Ju , Shi Ye , Tiantian Chen , Guanyang Xing , Feng Chen
{"title":"How do drivers manage speed at tunnel entrances? Insights from uncorrelated grouped random parameters duration models for model invalidation and performance recovery times","authors":"Yunjie Ju ,&nbsp;Shi Ye ,&nbsp;Tiantian Chen ,&nbsp;Guanyang Xing ,&nbsp;Feng Chen","doi":"10.1016/j.amar.2025.100371","DOIUrl":null,"url":null,"abstract":"<div><div>Human drivers must quickly adjust to perturbations at tunnel entrances (i.e., the rapid switching of cross-sections, abrupt longitudinal changes in the driving environment, and changes in visual illumination, denoted “tunnel transition perturbations”) to regain control of their vehicles, especially when managing speed to prevent motor overshoot. Previous research has assessed drivers’ visual adaptation rather than variations in vehicle control under tunnel transition perturbations. In this study, a sample entropy method was used to measure the safety–critical duration of speed control events at tunnel entrances and thereby reveal the participants’ speed adaptation and recovery performance under tunnel transition perturbations. Two key metrics—model invalidation time and performance recovery time—were introduced, and an uncorrelated grouped random parameters hazard-based duration model was developed. Road grade, road curvature, income, and time having held a license were positively associated with model invalidation time, while a history of accidents in the past 12 months was negatively associated with model invalidation time. In addition, road grade, road curvature, and income had heterogeneous effects on model invalidation time. Moreover, a history of accidents in the past 12 months moderated the relationship between road grade and model invalidation time. Furthermore, road curvature, average annual mileage, and sleep deprivation significantly influenced performance recovery time, while road grade and non-fatigue condition had heterogeneous effects on performance recovery time. Overall, this study demonstrated that the participants’ personal characteristics and experiences significantly shaped the development of their internal models, and that their current status and perception had a substantial influence on their performance recovery under tunnel transition perturbations. These insights enhance understanding of the mechanisms of drivers’ motor control under tunnel transition perturbations and will therefore enable improvement of road traffic design and safety management at tunnel entrances.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"45 ","pages":"Article 100371"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000028","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Human drivers must quickly adjust to perturbations at tunnel entrances (i.e., the rapid switching of cross-sections, abrupt longitudinal changes in the driving environment, and changes in visual illumination, denoted “tunnel transition perturbations”) to regain control of their vehicles, especially when managing speed to prevent motor overshoot. Previous research has assessed drivers’ visual adaptation rather than variations in vehicle control under tunnel transition perturbations. In this study, a sample entropy method was used to measure the safety–critical duration of speed control events at tunnel entrances and thereby reveal the participants’ speed adaptation and recovery performance under tunnel transition perturbations. Two key metrics—model invalidation time and performance recovery time—were introduced, and an uncorrelated grouped random parameters hazard-based duration model was developed. Road grade, road curvature, income, and time having held a license were positively associated with model invalidation time, while a history of accidents in the past 12 months was negatively associated with model invalidation time. In addition, road grade, road curvature, and income had heterogeneous effects on model invalidation time. Moreover, a history of accidents in the past 12 months moderated the relationship between road grade and model invalidation time. Furthermore, road curvature, average annual mileage, and sleep deprivation significantly influenced performance recovery time, while road grade and non-fatigue condition had heterogeneous effects on performance recovery time. Overall, this study demonstrated that the participants’ personal characteristics and experiences significantly shaped the development of their internal models, and that their current status and perception had a substantial influence on their performance recovery under tunnel transition perturbations. These insights enhance understanding of the mechanisms of drivers’ motor control under tunnel transition perturbations and will therefore enable improvement of road traffic design and safety management at tunnel entrances.
司机如何管理隧道入口的车速?从不相关的分组随机参数持续时间模型中了解模型失效和性能恢复时间
人类驾驶员必须迅速适应隧道入口的扰动(即,横断面的快速切换,驾驶环境的突然纵向变化以及视觉照明的变化,称为“隧道过渡扰动”),以重新控制车辆,特别是在管理速度以防止电机超调时。先前的研究评估的是驾驶员的视觉适应,而不是隧道过渡扰动下车辆控制的变化。本研究采用样本熵法测量隧道入口速度控制事件的安全临界持续时间,从而揭示隧道过渡扰动下参与者的速度适应和恢复性能。引入了两个关键指标——模型失效时间和性能恢复时间,并建立了一个不相关的分组随机参数基于风险的持续时间模型。道路等级、道路曲率、收入和持有驾照的时间与车型失效时间呈正相关,而过去12个月内的交通事故历史与车型失效时间呈负相关。此外,道路坡度、道路曲率和收入对模型失效时间的影响存在异质性。此外,过去12个月的事故历史缓和了道路等级与模型失效时间之间的关系。此外,道路曲率、平均年里程和睡眠剥夺对性能恢复时间有显著影响,而道路等级和非疲劳状态对性能恢复时间有异质性影响。总体而言,本研究表明,参与者的个人特征和经历显著地塑造了他们的内部模型的发展,他们的现状和感知对他们在隧道转换扰动下的绩效恢复有实质性的影响。这些见解增强了对隧道过渡扰动下驾驶员运动控制机制的理解,因此将有助于改进隧道入口的道路交通设计和安全管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信