A unified probabilistic approach to traffic conflict detection

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yiru Jiao , Simeon C. Calvert , Sander van Cranenburgh , Hans van Lint
{"title":"A unified probabilistic approach to traffic conflict detection","authors":"Yiru Jiao ,&nbsp;Simeon C. Calvert ,&nbsp;Sander van Cranenburgh ,&nbsp;Hans van Lint","doi":"10.1016/j.amar.2024.100369","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic conflict detection is essential for proactive road safety by identifying potential collisions before they occur. Existing methods rely on surrogate safety measures tailored to specific interactions (e.g., car-following, side-swiping, or path-crossing) and require varying thresholds in different traffic conditions. This variation leads to inconsistencies and limited adaptability of conflict detection in evolving traffic environments, particularly as the integration of autonomous driving systems adds complexity. Consequently, there is an increasing need for consistent detection of traffic conflicts across interaction contexts. To address this need, we propose a unified probabilistic approach in this study. The proposed approach establishes a unified framework of traffic conflict detection, where traffic conflicts are formulated as context-dependent extreme events of road user interactions. The detection of conflicts is then decomposed into a series of statistical learning tasks: representing interaction contexts, inferring proximity distributions, and assessing extreme collision risk. The unified formulation accommodates diverse hypotheses of traffic conflicts and the learning tasks enable data-driven analysis of factors such as motion states of road users, environment conditions, and participant characteristics. Jointly, this approach supports consistent and comprehensive evaluation of the collision risk emerging in road user interactions. We demonstrate the proposed approach by experiments using real-world trajectory data. A unified metric for indicating conflicts is first trained with lane-change interactions on German highways, and then compared with existing metrics using near-crash events from the U.S. 100-Car Naturalistic Driving Study. Our results show that the unified metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflict types, and captures a long-tailed distribution of conflict intensity. In summary, this study provides an explainable and generalisable approach that enables traffic conflict detection across varying interaction contexts. The findings highlight its potential to enhance the safety assessment of traffic infrastructures and policies, improve collision warning systems for autonomous driving, and deepen the understanding of road user behaviour in safety–critical interactions.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"45 ","pages":"Article 100369"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665724000538","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic conflict detection is essential for proactive road safety by identifying potential collisions before they occur. Existing methods rely on surrogate safety measures tailored to specific interactions (e.g., car-following, side-swiping, or path-crossing) and require varying thresholds in different traffic conditions. This variation leads to inconsistencies and limited adaptability of conflict detection in evolving traffic environments, particularly as the integration of autonomous driving systems adds complexity. Consequently, there is an increasing need for consistent detection of traffic conflicts across interaction contexts. To address this need, we propose a unified probabilistic approach in this study. The proposed approach establishes a unified framework of traffic conflict detection, where traffic conflicts are formulated as context-dependent extreme events of road user interactions. The detection of conflicts is then decomposed into a series of statistical learning tasks: representing interaction contexts, inferring proximity distributions, and assessing extreme collision risk. The unified formulation accommodates diverse hypotheses of traffic conflicts and the learning tasks enable data-driven analysis of factors such as motion states of road users, environment conditions, and participant characteristics. Jointly, this approach supports consistent and comprehensive evaluation of the collision risk emerging in road user interactions. We demonstrate the proposed approach by experiments using real-world trajectory data. A unified metric for indicating conflicts is first trained with lane-change interactions on German highways, and then compared with existing metrics using near-crash events from the U.S. 100-Car Naturalistic Driving Study. Our results show that the unified metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflict types, and captures a long-tailed distribution of conflict intensity. In summary, this study provides an explainable and generalisable approach that enables traffic conflict detection across varying interaction contexts. The findings highlight its potential to enhance the safety assessment of traffic infrastructures and policies, improve collision warning systems for autonomous driving, and deepen the understanding of road user behaviour in safety–critical interactions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信