{"title":"Single objective optimization for modeling elastoplastic damage of rock","authors":"Bozo Vazic, Eric C. Bryant, Kane C. Bennett","doi":"10.1016/j.ijrmms.2025.106034","DOIUrl":null,"url":null,"abstract":"<div><div>A unified objective optimization framework is developed for damage-coupled multisurface plasticity in the context of normal-dissipative media. The framework is shown to be advantageous in rock and soil mechanics applications to overcome difficulty associated with non-smoothness of the elastic domain due to the use of multiple intersecting yield-surfaces. The basic approach is one of mathematical programming, where the evolution of internal variables over a finite time step incrementally minimizes a suitable convex functional of the internal-energy and dissipative terms. A variant of the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) is employed to obviate the need for matrix inversion while constricting order of operations to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. To demonstrate the effectiveness of the novel multi-surface model in modeling strength and damage behavior over a range of confining pressures, we provide validation against existing triaxial compression data for Tavel limestone. Model robustness and utility in damage-based element deletion is further demonstrated in finite element simulation of a projectile penetrating into limestone.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106034"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A unified objective optimization framework is developed for damage-coupled multisurface plasticity in the context of normal-dissipative media. The framework is shown to be advantageous in rock and soil mechanics applications to overcome difficulty associated with non-smoothness of the elastic domain due to the use of multiple intersecting yield-surfaces. The basic approach is one of mathematical programming, where the evolution of internal variables over a finite time step incrementally minimizes a suitable convex functional of the internal-energy and dissipative terms. A variant of the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) is employed to obviate the need for matrix inversion while constricting order of operations to . To demonstrate the effectiveness of the novel multi-surface model in modeling strength and damage behavior over a range of confining pressures, we provide validation against existing triaxial compression data for Tavel limestone. Model robustness and utility in damage-based element deletion is further demonstrated in finite element simulation of a projectile penetrating into limestone.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.