{"title":"Electronic structure methods for simulating the applied potential in semiconductor electrochemistry","authors":"Kayvan Moradi, Marko M. Melander","doi":"10.1016/j.coelec.2024.101615","DOIUrl":null,"url":null,"abstract":"<div><div>Semiconductor electrodes (SCEs) play a decisive role in clean energy conversion technologies but understanding their complex electrochemistry remains an outstanding challenge. Herein, we review electronic structure methods for describing the applied electrode potential in simulations of semiconductor–electrolyte interfaces. We emphasize that inclusion of the electrode potential is significantly more challenging for SCEs than for metallic electrodes because SCEs require accurate models of semiconductor capacitance, including the space-charge region and surface effects, as well as the electrolyte double-layer capacitance. We discuss how these physicochemical complications challenge the development of atomistic models of SCE and how they impact the applicability of the computational hydrogen electrode, capacitance correction, grand canonical DFT, and Green function methods to model SCEs. We highlight the need for continued methodological development and conclude that integrating advanced atomistic models of SCEs with grand canonical, constant inner potential DFT or Green function methods holds promise for accurate SCE simulations.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101615"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001765","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor electrodes (SCEs) play a decisive role in clean energy conversion technologies but understanding their complex electrochemistry remains an outstanding challenge. Herein, we review electronic structure methods for describing the applied electrode potential in simulations of semiconductor–electrolyte interfaces. We emphasize that inclusion of the electrode potential is significantly more challenging for SCEs than for metallic electrodes because SCEs require accurate models of semiconductor capacitance, including the space-charge region and surface effects, as well as the electrolyte double-layer capacitance. We discuss how these physicochemical complications challenge the development of atomistic models of SCE and how they impact the applicability of the computational hydrogen electrode, capacitance correction, grand canonical DFT, and Green function methods to model SCEs. We highlight the need for continued methodological development and conclude that integrating advanced atomistic models of SCEs with grand canonical, constant inner potential DFT or Green function methods holds promise for accurate SCE simulations.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •