Dipam Manish Patel, Anjana Tripathi, Vivianne Karina Ocampo-Restrepo, Georg Kastlunger
{"title":"Electrocatalysis beyond the reversible hydrogen electrode","authors":"Dipam Manish Patel, Anjana Tripathi, Vivianne Karina Ocampo-Restrepo, Georg Kastlunger","doi":"10.1016/j.coelec.2024.101611","DOIUrl":null,"url":null,"abstract":"<div><div>The reversible and computational hydrogen electrodes have proven invaluable as reference electrodes in aqueous electrocatalysis, allowing an evaluation of the combined chemical potential of the proton–electron pair in experiments and computations. By construction, they cancel the pH dependence in most capacitive processes. However, for electrocatalysis, which is dominated by faradaic processes, this characteristic is rarely observed.</div><div>In this short review, we discuss the origins of deviations from the Nernstian behavior in capacitive and faradaic processes, their manifestation in experimental observables, and attempts to incorporate them in simulations. On this basis, we discuss how deviations from Nernstian behavior can be exploited in mechanistic analysis and highlight the use of electrostatic descriptors in computational screening to account for non-Nernstian effects explicitly.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101611"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001728","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reversible and computational hydrogen electrodes have proven invaluable as reference electrodes in aqueous electrocatalysis, allowing an evaluation of the combined chemical potential of the proton–electron pair in experiments and computations. By construction, they cancel the pH dependence in most capacitive processes. However, for electrocatalysis, which is dominated by faradaic processes, this characteristic is rarely observed.
In this short review, we discuss the origins of deviations from the Nernstian behavior in capacitive and faradaic processes, their manifestation in experimental observables, and attempts to incorporate them in simulations. On this basis, we discuss how deviations from Nernstian behavior can be exploited in mechanistic analysis and highlight the use of electrostatic descriptors in computational screening to account for non-Nernstian effects explicitly.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •