Modulating the interfacial electrochemical behavior of single layer graphene

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Wenjing Nan , Jiayang Lin , Linqi Xu , Lianhuan Han , Dongping Zhan
{"title":"Modulating the interfacial electrochemical behavior of single layer graphene","authors":"Wenjing Nan ,&nbsp;Jiayang Lin ,&nbsp;Linqi Xu ,&nbsp;Lianhuan Han ,&nbsp;Dongping Zhan","doi":"10.1016/j.coelec.2024.101608","DOIUrl":null,"url":null,"abstract":"<div><div>Single-layer graphene (SLG) is renowned for its unique electronic structure and zero band gap, which presents both opportunities and challenges in electrochemical systems, particularly due to its inherently inert heterogeneous electron transfer (HET) properties. Precisely tuning the physicochemical properties of SLG is crucial for optimizing its performance in electrochemical devices. For atomically thin SLG, subtle modifications to its electronic structure can enhance its heterogeneous charge transfer and surface reactivity effectively. Here we present a concise review on recent advances in modulating the interfacial electrochemical behavior of SLG and few-layer graphene, with a focus on defect engineering, layer number regulation, and interfacial engineering. We emphasize the impact of these strategies on modulating graphene's electronic structure, particularly concerning HET and electrochemical performance, and offer perspectives on future developments in this field.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101608"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001698","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-layer graphene (SLG) is renowned for its unique electronic structure and zero band gap, which presents both opportunities and challenges in electrochemical systems, particularly due to its inherently inert heterogeneous electron transfer (HET) properties. Precisely tuning the physicochemical properties of SLG is crucial for optimizing its performance in electrochemical devices. For atomically thin SLG, subtle modifications to its electronic structure can enhance its heterogeneous charge transfer and surface reactivity effectively. Here we present a concise review on recent advances in modulating the interfacial electrochemical behavior of SLG and few-layer graphene, with a focus on defect engineering, layer number regulation, and interfacial engineering. We emphasize the impact of these strategies on modulating graphene's electronic structure, particularly concerning HET and electrochemical performance, and offer perspectives on future developments in this field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信