A comprehensive review on integrated photo rechargeable batteries- supercapacitors, and their techno-economic feasibility

IF 3.261
Jyoti Bhattacharjee, Subhasis Roy
{"title":"A comprehensive review on integrated photo rechargeable batteries- supercapacitors, and their techno-economic feasibility","authors":"Jyoti Bhattacharjee,&nbsp;Subhasis Roy","doi":"10.1016/j.jpap.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy is a cost-effective replacement for traditional fossil fuels since it is a green, renewable energy source. Direct solar energy conversion and storage using electrochemistry have been proposed. In this context, the need to create high-performance integrated devices based on solar energy conversion components such as solar cells, photoelectrodes, and electrochemical energy storage components has increased. Carbon and functional materials based on carbon play a major role in the performance of energy conversion/storage components. The techno-economic performance of two alternative hybrid energy storage system designs of the supercapacitor and photo rechargeable battery systems are compared in this review paper. The importance and impact of photoactive nanomaterials acting as photoelectrodes in embedded photo batteries result from their structure, topology, and pertinent for photo charging and Li-ion storage; this photo battery uses highly photosensitive two-dimensional lead halide perovskites. Integrating lithium-ion batteries (LIB) with fast-charging supercapacitors (SCs) decreases the time storage technologies take compared to conventional systems. The important role of carbon‐based materials in integrated devices has been highlighted. The optimized electric renewable model was used to analyze the techno-economic analysis of the fast-charging lithium-ion battery (FCLIB) proposal. The fundamentals of integrated devices are presented, emphasizing the functions performed by carbon-based materials in these hybrid energy devices. This review also highlights the importance of integrated devices, photovoltaic and photoelectrochemical rechargeable batteries, and supercapacitors and their techno-economic viability, challenges, and future development.</div></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"25 ","pages":"Article 100257"},"PeriodicalIF":3.2610,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469024000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is a cost-effective replacement for traditional fossil fuels since it is a green, renewable energy source. Direct solar energy conversion and storage using electrochemistry have been proposed. In this context, the need to create high-performance integrated devices based on solar energy conversion components such as solar cells, photoelectrodes, and electrochemical energy storage components has increased. Carbon and functional materials based on carbon play a major role in the performance of energy conversion/storage components. The techno-economic performance of two alternative hybrid energy storage system designs of the supercapacitor and photo rechargeable battery systems are compared in this review paper. The importance and impact of photoactive nanomaterials acting as photoelectrodes in embedded photo batteries result from their structure, topology, and pertinent for photo charging and Li-ion storage; this photo battery uses highly photosensitive two-dimensional lead halide perovskites. Integrating lithium-ion batteries (LIB) with fast-charging supercapacitors (SCs) decreases the time storage technologies take compared to conventional systems. The important role of carbon‐based materials in integrated devices has been highlighted. The optimized electric renewable model was used to analyze the techno-economic analysis of the fast-charging lithium-ion battery (FCLIB) proposal. The fundamentals of integrated devices are presented, emphasizing the functions performed by carbon-based materials in these hybrid energy devices. This review also highlights the importance of integrated devices, photovoltaic and photoelectrochemical rechargeable batteries, and supercapacitors and their techno-economic viability, challenges, and future development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信