Optimisation and material considerations of piezoelectric implants for cardiac applications

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuan Wang, Matthew S. Dargusch
{"title":"Optimisation and material considerations of piezoelectric implants for cardiac applications","authors":"Yuan Wang,&nbsp;Matthew S. Dargusch","doi":"10.1016/j.cossms.2024.101211","DOIUrl":null,"url":null,"abstract":"<div><div>The capacity of piezoelectric materials for mechanoelectrical transduction has led to a variety of piezoelectric cardiac implants that could revolutionise cardiac-related healthcare delivery. To advance their clinical translation, critical factors including energy output, biocompatibility, biodegradability/durability, and flexibility need to be collectively assessed to ensure successful medical implantation. This review aims to systematically discuss these critical factors, providing insights into corresponding progress and covering relevant mechanisms and strategies in a clinical setting. The concept of additive-free output optimisation has been proposed which focuses on enhancing piezoelectric output based on existing material systems so that biosafety risks and the time-consuming examination processes induced by introducing additional components can be minimised. Critical discussions regarding the biocompatibility and biodegradability of piezoelectric implants were subsequently conducted. This involved reviewing the biocompatibility of material systems associated with piezoelectric implants and introducing biodegradability mechanisms and potential manipulation strategies. The flexibility of implants was also discussed in conjunction with fabrication methods. Current novel piezoelectric cardiac treatments were summarised covering <em>in vivo</em> energy harvesting, hemodynamic sensing, and cardiac tissue regeneration and stimulation. Lastly, challenges and future perspectives were proposed to inspire future work focused on the translation of reliable piezoelectric implants for addressing cardiac diseases.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"34 ","pages":"Article 101211"},"PeriodicalIF":12.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The capacity of piezoelectric materials for mechanoelectrical transduction has led to a variety of piezoelectric cardiac implants that could revolutionise cardiac-related healthcare delivery. To advance their clinical translation, critical factors including energy output, biocompatibility, biodegradability/durability, and flexibility need to be collectively assessed to ensure successful medical implantation. This review aims to systematically discuss these critical factors, providing insights into corresponding progress and covering relevant mechanisms and strategies in a clinical setting. The concept of additive-free output optimisation has been proposed which focuses on enhancing piezoelectric output based on existing material systems so that biosafety risks and the time-consuming examination processes induced by introducing additional components can be minimised. Critical discussions regarding the biocompatibility and biodegradability of piezoelectric implants were subsequently conducted. This involved reviewing the biocompatibility of material systems associated with piezoelectric implants and introducing biodegradability mechanisms and potential manipulation strategies. The flexibility of implants was also discussed in conjunction with fabrication methods. Current novel piezoelectric cardiac treatments were summarised covering in vivo energy harvesting, hemodynamic sensing, and cardiac tissue regeneration and stimulation. Lastly, challenges and future perspectives were proposed to inspire future work focused on the translation of reliable piezoelectric implants for addressing cardiac diseases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信