{"title":"Optimisation and material considerations of piezoelectric implants for cardiac applications","authors":"Yuan Wang, Matthew S. Dargusch","doi":"10.1016/j.cossms.2024.101211","DOIUrl":null,"url":null,"abstract":"<div><div>The capacity of piezoelectric materials for mechanoelectrical transduction has led to a variety of piezoelectric cardiac implants that could revolutionise cardiac-related healthcare delivery. To advance their clinical translation, critical factors including energy output, biocompatibility, biodegradability/durability, and flexibility need to be collectively assessed to ensure successful medical implantation. This review aims to systematically discuss these critical factors, providing insights into corresponding progress and covering relevant mechanisms and strategies in a clinical setting. The concept of additive-free output optimisation has been proposed which focuses on enhancing piezoelectric output based on existing material systems so that biosafety risks and the time-consuming examination processes induced by introducing additional components can be minimised. Critical discussions regarding the biocompatibility and biodegradability of piezoelectric implants were subsequently conducted. This involved reviewing the biocompatibility of material systems associated with piezoelectric implants and introducing biodegradability mechanisms and potential manipulation strategies. The flexibility of implants was also discussed in conjunction with fabrication methods. Current novel piezoelectric cardiac treatments were summarised covering <em>in vivo</em> energy harvesting, hemodynamic sensing, and cardiac tissue regeneration and stimulation. Lastly, challenges and future perspectives were proposed to inspire future work focused on the translation of reliable piezoelectric implants for addressing cardiac diseases.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"34 ","pages":"Article 101211"},"PeriodicalIF":12.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The capacity of piezoelectric materials for mechanoelectrical transduction has led to a variety of piezoelectric cardiac implants that could revolutionise cardiac-related healthcare delivery. To advance their clinical translation, critical factors including energy output, biocompatibility, biodegradability/durability, and flexibility need to be collectively assessed to ensure successful medical implantation. This review aims to systematically discuss these critical factors, providing insights into corresponding progress and covering relevant mechanisms and strategies in a clinical setting. The concept of additive-free output optimisation has been proposed which focuses on enhancing piezoelectric output based on existing material systems so that biosafety risks and the time-consuming examination processes induced by introducing additional components can be minimised. Critical discussions regarding the biocompatibility and biodegradability of piezoelectric implants were subsequently conducted. This involved reviewing the biocompatibility of material systems associated with piezoelectric implants and introducing biodegradability mechanisms and potential manipulation strategies. The flexibility of implants was also discussed in conjunction with fabrication methods. Current novel piezoelectric cardiac treatments were summarised covering in vivo energy harvesting, hemodynamic sensing, and cardiac tissue regeneration and stimulation. Lastly, challenges and future perspectives were proposed to inspire future work focused on the translation of reliable piezoelectric implants for addressing cardiac diseases.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field