Myriel Kim, Rebecca Avrutin, Sean Chryz Iranzo, Honggang Cui
{"title":"High-affinity peptide biomaterials","authors":"Myriel Kim, Rebecca Avrutin, Sean Chryz Iranzo, Honggang Cui","doi":"10.1016/j.cossms.2024.101212","DOIUrl":null,"url":null,"abstract":"<div><div>High-affinity binding is a crucial aspect in the design of advanced biomaterials, enabling the creation of materials that can specifically and effectively interact with target objects such as tissues, cells, or biomolecules, mimicking the sophisticated yet well-controlled interactions found in nature. Peptide-based high-affinity biomaterials have emerged as a promising class due to their versatility in chemical design, simplicity in synthesis and formulation, intrinsic ability to mediate biological communication, and key materials features such as tunable biodegradability and modulable biocompatibility. This Opinion article highlights the critical factors to consider in the development of high-affinity peptide materials, including the selection of appropriate peptide ligands, ensuring conformational stability, and optimizing ligand density and conjugation strategies. It also explores how these design considerations have been successfully employed in various applications, including regenerative medicine, drug delivery, and molecular purification.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"34 ","pages":"Article 101212"},"PeriodicalIF":12.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000780","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-affinity binding is a crucial aspect in the design of advanced biomaterials, enabling the creation of materials that can specifically and effectively interact with target objects such as tissues, cells, or biomolecules, mimicking the sophisticated yet well-controlled interactions found in nature. Peptide-based high-affinity biomaterials have emerged as a promising class due to their versatility in chemical design, simplicity in synthesis and formulation, intrinsic ability to mediate biological communication, and key materials features such as tunable biodegradability and modulable biocompatibility. This Opinion article highlights the critical factors to consider in the development of high-affinity peptide materials, including the selection of appropriate peptide ligands, ensuring conformational stability, and optimizing ligand density and conjugation strategies. It also explores how these design considerations have been successfully employed in various applications, including regenerative medicine, drug delivery, and molecular purification.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field