Wireko Andrew Awuah , Muhammad Hamza Shah , Vivek Sanker , Krishitha Meenu Mannan , Sruthi Ranganathan , Princess Afia Nkrumah-Boateng , Mabel Frimpong , Kwadwo Darko , Joecelyn Kirani Tan , Toufik Abdul-Rahman , Oday Atallah
{"title":"Advances in chromosomal microarray analysis: Transforming neurology and neurosurgery","authors":"Wireko Andrew Awuah , Muhammad Hamza Shah , Vivek Sanker , Krishitha Meenu Mannan , Sruthi Ranganathan , Princess Afia Nkrumah-Boateng , Mabel Frimpong , Kwadwo Darko , Joecelyn Kirani Tan , Toufik Abdul-Rahman , Oday Atallah","doi":"10.1016/j.bas.2025.104197","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past two decades, genomics has transformed our understanding of various clinical conditions, with Chromosomal Microarray Analysis (CMA) standing out as a key technique. Offering unparalleled sensitivity, CMA detects submicroscopic chromosomal imbalances, enabling the examination of DNA for copy number variations, deletions, duplications, and other structural differences. In neurology, CMA has revolutionised diagnoses, personalised treatment plans, and patient outcomes. By identifying genetic anomalies linked to neurological conditions, CMA allows clinicians to tailor treatments based on individual genetic profiles, enhancing precision medicine. CMA's clinical utility spans numerous neurological conditions, providing crucial insights into neurodevelopmental disorders, CNS tumours, neurodegenerative diseases, cerebrovascular diseases, and epilepsy. In neurodevelopmental disorders, CMA aids in diagnosing autism and intellectual disabilities, facilitating early interventions that improve long-term outcomes. In epilepsy, CMA helps identify genetic causes of drug-resistant seizures, enabling more targeted therapies and reducing adverse reactions. CMA also aids in stratifying risk for cerebrovascular diseases, enabling preventive interventions that improve patient prognosis. Despite its potential, challenges remain, such as interpreting variants of uncertain significance (VOUS), the lack of standardised testing guidelines, and issues of cost and accessibility. Addressing these challenges will optimise CMA's impact, advancing personalised medicine and reshaping neurology. This review discusses CMA's pivotal role in bridging the gap between genomics and clinical practice, underscoring its potential to transform neurogenetics and ultimately improve patient care.</div></div>","PeriodicalId":72443,"journal":{"name":"Brain & spine","volume":"5 ","pages":"Article 104197"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain & spine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772529425000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past two decades, genomics has transformed our understanding of various clinical conditions, with Chromosomal Microarray Analysis (CMA) standing out as a key technique. Offering unparalleled sensitivity, CMA detects submicroscopic chromosomal imbalances, enabling the examination of DNA for copy number variations, deletions, duplications, and other structural differences. In neurology, CMA has revolutionised diagnoses, personalised treatment plans, and patient outcomes. By identifying genetic anomalies linked to neurological conditions, CMA allows clinicians to tailor treatments based on individual genetic profiles, enhancing precision medicine. CMA's clinical utility spans numerous neurological conditions, providing crucial insights into neurodevelopmental disorders, CNS tumours, neurodegenerative diseases, cerebrovascular diseases, and epilepsy. In neurodevelopmental disorders, CMA aids in diagnosing autism and intellectual disabilities, facilitating early interventions that improve long-term outcomes. In epilepsy, CMA helps identify genetic causes of drug-resistant seizures, enabling more targeted therapies and reducing adverse reactions. CMA also aids in stratifying risk for cerebrovascular diseases, enabling preventive interventions that improve patient prognosis. Despite its potential, challenges remain, such as interpreting variants of uncertain significance (VOUS), the lack of standardised testing guidelines, and issues of cost and accessibility. Addressing these challenges will optimise CMA's impact, advancing personalised medicine and reshaping neurology. This review discusses CMA's pivotal role in bridging the gap between genomics and clinical practice, underscoring its potential to transform neurogenetics and ultimately improve patient care.