Enhancing chemoimmunotherapy for colorectal cancer with paclitaxel and alantolactone via CD44-Targeted nanoparticles: A STAT3 signaling pathway modulation approach

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Fugen Wu , Xingsi An , Shize Li , Chenyu Qiu , Yixuan Zhu , Zhanzheng Ye , Shengnan Song , Yunzhi Wang , Dingchao Shen , Xinyu Di , Yinsha Yao , Wanling Zhu , Xinyu Jiang , Xianbao Shi , Ruijie Chen , Longfa Kou
{"title":"Enhancing chemoimmunotherapy for colorectal cancer with paclitaxel and alantolactone via CD44-Targeted nanoparticles: A STAT3 signaling pathway modulation approach","authors":"Fugen Wu ,&nbsp;Xingsi An ,&nbsp;Shize Li ,&nbsp;Chenyu Qiu ,&nbsp;Yixuan Zhu ,&nbsp;Zhanzheng Ye ,&nbsp;Shengnan Song ,&nbsp;Yunzhi Wang ,&nbsp;Dingchao Shen ,&nbsp;Xinyu Di ,&nbsp;Yinsha Yao ,&nbsp;Wanling Zhu ,&nbsp;Xinyu Jiang ,&nbsp;Xianbao Shi ,&nbsp;Ruijie Chen ,&nbsp;Longfa Kou","doi":"10.1016/j.ajps.2024.100993","DOIUrl":null,"url":null,"abstract":"<div><div>Chemoimmunotherapy has the potential to enhance chemotherapy and modulate the immunosuppressive tumor microenvironment by activating immunogenic cell death (ICD), making it a promising strategy for clinical application. Alantolactone (A) was found to augment the anticancer efficacy of paclitaxel (P) at a molar ratio of 1:0.5 (P:A) through induction of more potent ICD via modulation of STAT3 signaling pathways. Nano drug delivery systems can synergistically combine natural drugs with conventional chemotherapeutic agents, thereby enhancing multi-drug chemoimmunotherapy. To improve tumor targeting ability and bioavailability of hydrophobic drugs, an amphiphilic prodrug conjugate (HA-PTX) was chemically modified with paclitaxel (PTX) and hyaluronic acid (HA) as a backbone. Based on this concept, CD44-targeted nanodrugs (A@HAP NPs) were developed for co-delivery of A and P in colorectal cancer treatment, aiming to achieve synergistic toxicity-based chemo-immunotherapy. The uniform size and high drug loading capacity of A@HAP NPs facilitated their accumulation within tumors through enhanced permeability and retention effect as well as HA-mediated targeting, providing a solid foundation for subsequent synergistic therapy and immunoregulation. <em>In vitro</em> and <em>in vivo</em> studies demonstrated that A@HAP NPs exhibited potent cytotoxicity against tumor cells while also remodeling the immune-suppressive tumor microenvironment by promoting antigen presentation and inducing dendritic cell maturation, thus offering a novel approach for colorectal cancer chemoimmunotherapy.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 1","pages":"Article 100993"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624001107","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemoimmunotherapy has the potential to enhance chemotherapy and modulate the immunosuppressive tumor microenvironment by activating immunogenic cell death (ICD), making it a promising strategy for clinical application. Alantolactone (A) was found to augment the anticancer efficacy of paclitaxel (P) at a molar ratio of 1:0.5 (P:A) through induction of more potent ICD via modulation of STAT3 signaling pathways. Nano drug delivery systems can synergistically combine natural drugs with conventional chemotherapeutic agents, thereby enhancing multi-drug chemoimmunotherapy. To improve tumor targeting ability and bioavailability of hydrophobic drugs, an amphiphilic prodrug conjugate (HA-PTX) was chemically modified with paclitaxel (PTX) and hyaluronic acid (HA) as a backbone. Based on this concept, CD44-targeted nanodrugs (A@HAP NPs) were developed for co-delivery of A and P in colorectal cancer treatment, aiming to achieve synergistic toxicity-based chemo-immunotherapy. The uniform size and high drug loading capacity of A@HAP NPs facilitated their accumulation within tumors through enhanced permeability and retention effect as well as HA-mediated targeting, providing a solid foundation for subsequent synergistic therapy and immunoregulation. In vitro and in vivo studies demonstrated that A@HAP NPs exhibited potent cytotoxicity against tumor cells while also remodeling the immune-suppressive tumor microenvironment by promoting antigen presentation and inducing dendritic cell maturation, thus offering a novel approach for colorectal cancer chemoimmunotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
文献相关原料
公司名称
产品信息
阿拉丁
PTX
阿拉丁
nile red (NR)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信