Phytoplankton growth and succession driven by topography and hydrodynamics in seasonal ice-covered lakes

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Ziyue Zhao , Yanfeng Wu , Y. Jun Xu , Yexiang Yu , Guangxin Zhang , Dehua Mao , Xuemei Liu , Changlei Dai
{"title":"Phytoplankton growth and succession driven by topography and hydrodynamics in seasonal ice-covered lakes","authors":"Ziyue Zhao ,&nbsp;Yanfeng Wu ,&nbsp;Y. Jun Xu ,&nbsp;Yexiang Yu ,&nbsp;Guangxin Zhang ,&nbsp;Dehua Mao ,&nbsp;Xuemei Liu ,&nbsp;Changlei Dai","doi":"10.1016/j.ecoinf.2025.103053","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how underwater topography affects phytoplankton succession by influencing hydrodynamics is crucial for maintaining the ecological health of lakes. However, there is a lack of in-depth research that accurately depicts underwater topography and coupleing hydrodynamics to establish the reproduction and migration mechanisms of phytoplankton, especially in seasonal ice-covered lakes. A typical seasonally ice-covered lake, Lake Chagan, was selected, and 164 water column and plankton samples were collected in 2023. An integrated underwater topographic-hydrodynamic model was constructed based on topographic data from 597 exploration points and long-term hydrological and meteorological observational data. The dominant algal species and their three-dimensional distribution and succession processes during different periods were studied in detail. The effects of topographic factors (relief, surface curvature, water depth, slope gradient, roughness, and slope aspect) on the hydrodynamic field and phytoplankton distribution were discussed. The results showed that the phytoplankton species diversity was higher in the bottom water column during the non-ice-covered period (March to October). The dominant species of phytoplankton varied with seasons, with diatoms dominating in the ice-covered period and harmful phytoplankton such as cyanobacteria in the non-ice-covered period. The biomass and biomass density of cyanobacteria were also higher than those of other phytoplankton. Phytoplankton species diversity and richness indices in the surface water column had a significant combined effect on the entire lake ecosystem. Surface curvature and slope gradient were the main factors affecting flow velocity during the non-ice-covered period (<em>p</em> <em>≤</em> <em>0.05</em>, <em>r = −0.58</em> and <em>− 0.62</em>), directly affecting the spatial distribution of cyanobacterial biomass (<em>p</em> <em>≤</em> <em>0.05</em>, <em>r = 0.65</em>; <em>p</em> <em>≤</em> <em>0.01</em>, <em>r = −0.71</em>). Therefore, attention should be paid to the surface curvature and slope of the sediment when controlling cyanobacterial blooms via by sediment dredging. These studies explored the behavior of phytoplankton in response to their fluid environment from a combined biological and physical-dynamic perspective and provided an effective reference for the water environment management of seasonal ice-covered lakes with harmful algal blooms.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103053"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000627","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how underwater topography affects phytoplankton succession by influencing hydrodynamics is crucial for maintaining the ecological health of lakes. However, there is a lack of in-depth research that accurately depicts underwater topography and coupleing hydrodynamics to establish the reproduction and migration mechanisms of phytoplankton, especially in seasonal ice-covered lakes. A typical seasonally ice-covered lake, Lake Chagan, was selected, and 164 water column and plankton samples were collected in 2023. An integrated underwater topographic-hydrodynamic model was constructed based on topographic data from 597 exploration points and long-term hydrological and meteorological observational data. The dominant algal species and their three-dimensional distribution and succession processes during different periods were studied in detail. The effects of topographic factors (relief, surface curvature, water depth, slope gradient, roughness, and slope aspect) on the hydrodynamic field and phytoplankton distribution were discussed. The results showed that the phytoplankton species diversity was higher in the bottom water column during the non-ice-covered period (March to October). The dominant species of phytoplankton varied with seasons, with diatoms dominating in the ice-covered period and harmful phytoplankton such as cyanobacteria in the non-ice-covered period. The biomass and biomass density of cyanobacteria were also higher than those of other phytoplankton. Phytoplankton species diversity and richness indices in the surface water column had a significant combined effect on the entire lake ecosystem. Surface curvature and slope gradient were the main factors affecting flow velocity during the non-ice-covered period (p  0.05, r = −0.58 and − 0.62), directly affecting the spatial distribution of cyanobacterial biomass (p  0.05, r = 0.65; p  0.01, r = −0.71). Therefore, attention should be paid to the surface curvature and slope of the sediment when controlling cyanobacterial blooms via by sediment dredging. These studies explored the behavior of phytoplankton in response to their fluid environment from a combined biological and physical-dynamic perspective and provided an effective reference for the water environment management of seasonal ice-covered lakes with harmful algal blooms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信