Igor A. Lukyanchuk , Anna G. Razumnaya , Svitlana Kondovych , Yuri A. Tikhonov , Boris Khesin , Valerii M. Vinokur
{"title":"Topological foundations of ferroelectricity","authors":"Igor A. Lukyanchuk , Anna G. Razumnaya , Svitlana Kondovych , Yuri A. Tikhonov , Boris Khesin , Valerii M. Vinokur","doi":"10.1016/j.physrep.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>The 21st century has witnessed a revolutionary shift in the understanding of properties of matter driven by the application of topological principles. While the traditional approach to material science has been focusing on local interactions, topology introduces a global, non-local description in which the geometry of a material profoundly influences its properties. Ferroelectric materials, with their spontaneous electric polarization, have long been essential for understanding fundamental physical phenomena, which have led to numerous practical applications. Recent discoveries have revealed that nanostructured ferroelectrics host a wealth of fundamental topological states, which effectively enrich the landscape of ferroelectric research. This Review explores the topological foundation of ferroelectricity, rooted in the electrostatic essence of these materials. Drawing upon the analogy between the hydrodynamics of incompressible fluids and the electrostatics of polarization fields, we establish a comprehensive framework for classifying the complex topological states observed in ferroelectrics. We demonstrate that the rich diversity of polarization structures can be exhaustively described using the advanced topological approach. By extending fundamental topological concepts such as helicity, fibration, foliation, and ergodicity, we offer a systematic analysis of the topological textures in ferroelectrics. This work provides a coherent framework for understanding and manipulating topological structures in nanostructured ferroelectrics, paving the way for innovations in materials science and technology.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1110 ","pages":"Pages 1-56"},"PeriodicalIF":23.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157325000225","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The 21st century has witnessed a revolutionary shift in the understanding of properties of matter driven by the application of topological principles. While the traditional approach to material science has been focusing on local interactions, topology introduces a global, non-local description in which the geometry of a material profoundly influences its properties. Ferroelectric materials, with their spontaneous electric polarization, have long been essential for understanding fundamental physical phenomena, which have led to numerous practical applications. Recent discoveries have revealed that nanostructured ferroelectrics host a wealth of fundamental topological states, which effectively enrich the landscape of ferroelectric research. This Review explores the topological foundation of ferroelectricity, rooted in the electrostatic essence of these materials. Drawing upon the analogy between the hydrodynamics of incompressible fluids and the electrostatics of polarization fields, we establish a comprehensive framework for classifying the complex topological states observed in ferroelectrics. We demonstrate that the rich diversity of polarization structures can be exhaustively described using the advanced topological approach. By extending fundamental topological concepts such as helicity, fibration, foliation, and ergodicity, we offer a systematic analysis of the topological textures in ferroelectrics. This work provides a coherent framework for understanding and manipulating topological structures in nanostructured ferroelectrics, paving the way for innovations in materials science and technology.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.