Fares Bennai , Mohamed Khaled Bourbatache , Tien Dung Le , Mahdia Hattab , Olivier Millet
{"title":"Determination of effective diffusion properties based on 3D FIB/SEM images of clays","authors":"Fares Bennai , Mohamed Khaled Bourbatache , Tien Dung Le , Mahdia Hattab , Olivier Millet","doi":"10.1016/j.clay.2025.107717","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a numerical approach aiming to estimate the effective diffusion properties of clay using real 3D images obtained through Focused Ion Beam and Scanning Electron Microscopy (FIB/SEM). A description of the original FIB/SEM procedure, specifically developed for observing remoulded clays at the particle scale, is presented. Image processing allowed the reconstruction of a micro-volume extracted from a clay sample subjected to an oedometric loading with an effective vertical stress of 1000 kPa. Numerical calculations of effective diffusivity were performed on the real 3D images using periodic homogenization technique. The results revealed anisotropy in the diffusion phenomena of the studied clay: the effective diffusion coefficient is lower along the direction of the mechanical loading and higher in the plane normal to the stress axis. These findings are consistent with quantitative pore orientation results obtained through image processing, where it was shown that, after mechanical loading, the pores tend to orient towards the plane normal to the axis of the effective vertical stress. These results demonstrate that incorporating the real geometry of clay microstructure into diffusion property calculations allows for a better consideration of the complexity of the clay fabric in relation to mechanical loading.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"267 ","pages":"Article 107717"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000225","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a numerical approach aiming to estimate the effective diffusion properties of clay using real 3D images obtained through Focused Ion Beam and Scanning Electron Microscopy (FIB/SEM). A description of the original FIB/SEM procedure, specifically developed for observing remoulded clays at the particle scale, is presented. Image processing allowed the reconstruction of a micro-volume extracted from a clay sample subjected to an oedometric loading with an effective vertical stress of 1000 kPa. Numerical calculations of effective diffusivity were performed on the real 3D images using periodic homogenization technique. The results revealed anisotropy in the diffusion phenomena of the studied clay: the effective diffusion coefficient is lower along the direction of the mechanical loading and higher in the plane normal to the stress axis. These findings are consistent with quantitative pore orientation results obtained through image processing, where it was shown that, after mechanical loading, the pores tend to orient towards the plane normal to the axis of the effective vertical stress. These results demonstrate that incorporating the real geometry of clay microstructure into diffusion property calculations allows for a better consideration of the complexity of the clay fabric in relation to mechanical loading.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...