Experimental investigation of the undrained dynamic behavior of soft clay under equivalent earthquake loadings

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zhong-Liang Zhang, Zhen-Dong Cui, Min-Zhe Xu
{"title":"Experimental investigation of the undrained dynamic behavior of soft clay under equivalent earthquake loadings","authors":"Zhong-Liang Zhang,&nbsp;Zhen-Dong Cui,&nbsp;Min-Zhe Xu","doi":"10.1016/j.soildyn.2024.109183","DOIUrl":null,"url":null,"abstract":"<div><div>Soft clay is extensively distributed in the Yangtze River Delta of China. Many seismic events indicate that underground structures buried in soft soil may suffer severe damage from earthquakes. In this study, a series of bidirectional dynamic cyclic triaxial tests were conducted to investigate the dynamic behavior of soft clay, considering different confining pressures and consolidation stress ratios. A simplified equivalent seismic loading method based on the strain failure criterion was proposed. The obtained equivalent amplitude of soft clay calculating by the critical cyclic stress ratio is averagely 1.58 times that of the sand liquefaction method. Under equivalent seismic cyclic loading, the dynamic shear strain and excess pore pressure of soft clay increases with the increase of confining pressure. The relationship between the maximum excess pore pressure and the corresponding shear strain can be expressed by a hyperbolic function. Due to the weakening effect of seismic loading, the shear modulus decreases as the shear strain increases, with a sudden reduction of up to 45 %. The shear modulus and damping ratio increase with the increase of confining pressure and consolidation stress ratio. The research results may provide some valuable insights into the seismic design practices in soft clay areas.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"190 ","pages":"Article 109183"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124007358","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soft clay is extensively distributed in the Yangtze River Delta of China. Many seismic events indicate that underground structures buried in soft soil may suffer severe damage from earthquakes. In this study, a series of bidirectional dynamic cyclic triaxial tests were conducted to investigate the dynamic behavior of soft clay, considering different confining pressures and consolidation stress ratios. A simplified equivalent seismic loading method based on the strain failure criterion was proposed. The obtained equivalent amplitude of soft clay calculating by the critical cyclic stress ratio is averagely 1.58 times that of the sand liquefaction method. Under equivalent seismic cyclic loading, the dynamic shear strain and excess pore pressure of soft clay increases with the increase of confining pressure. The relationship between the maximum excess pore pressure and the corresponding shear strain can be expressed by a hyperbolic function. Due to the weakening effect of seismic loading, the shear modulus decreases as the shear strain increases, with a sudden reduction of up to 45 %. The shear modulus and damping ratio increase with the increase of confining pressure and consolidation stress ratio. The research results may provide some valuable insights into the seismic design practices in soft clay areas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信