Hyperspectral sensing of aboveground biomass and species diversity in a long-running grassland experiment

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Ramesh K. Ningthoujam , Keith J. Bloomfield , Michael J. Crawley , Catalina Estrada , I. Colin Prentice
{"title":"Hyperspectral sensing of aboveground biomass and species diversity in a long-running grassland experiment","authors":"Ramesh K. Ningthoujam ,&nbsp;Keith J. Bloomfield ,&nbsp;Michael J. Crawley ,&nbsp;Catalina Estrada ,&nbsp;I. Colin Prentice","doi":"10.1016/j.ecoinf.2025.103028","DOIUrl":null,"url":null,"abstract":"<div><div>Vegetation properties can be assessed through analysis of canopy reflectance spectra. Early techniques relied on simple two-band vegetation indices (VIs) that exploit leaf reflectance properties at key wavelengths. As the technology matures it is now possible to gather and test hyperspectral data. Little evidence exists on how different management regimes, such as nutrient addition, might affect hyperspectral reflectance and thus influence derived estimates of plant diversity and productivity. At a grassland experiment in southern England, we used a portable spectroradiometer to sample 96 plots exposed to multifactorial treatments combining herbivory, plant competition, soil pH and fertility. Our objective was to compare the predictive performance of popular two-band VIs with a multivariate partial least square regression (PLSR) model that uses all available wavelengths. We found that the PLSR models showed higher predictive power than the best performing VIs – that was especially true for our measure of species diversity (<span><math><msubsup><mi>R</mi><mi>cv</mi><mn>2</mn></msubsup></math></span> = 0.36 compared with a Pearson correlation of 0.21). The predictive power for our PLSR model of biomass (<span><math><msubsup><mi>R</mi><mi>cv</mi><mn>2</mn></msubsup></math></span> = 0.54) compares favourably with values reported in earlier grassland studies. These results confirm that hyperspectral measurement combined with multivariate regression techniques is a promising approach for monitoring grassland properties. There is evidence of particular benefit in capturing narrow bands associated with the red edge region of the spectrum (700–750 nm). Remotely sensed hyperspectral images at a fine spatial scale offer the prospect for matching with sampling units as small as the 2 × 2 m nutrient subplots measured here.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103028"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000378","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation properties can be assessed through analysis of canopy reflectance spectra. Early techniques relied on simple two-band vegetation indices (VIs) that exploit leaf reflectance properties at key wavelengths. As the technology matures it is now possible to gather and test hyperspectral data. Little evidence exists on how different management regimes, such as nutrient addition, might affect hyperspectral reflectance and thus influence derived estimates of plant diversity and productivity. At a grassland experiment in southern England, we used a portable spectroradiometer to sample 96 plots exposed to multifactorial treatments combining herbivory, plant competition, soil pH and fertility. Our objective was to compare the predictive performance of popular two-band VIs with a multivariate partial least square regression (PLSR) model that uses all available wavelengths. We found that the PLSR models showed higher predictive power than the best performing VIs – that was especially true for our measure of species diversity (Rcv2 = 0.36 compared with a Pearson correlation of 0.21). The predictive power for our PLSR model of biomass (Rcv2 = 0.54) compares favourably with values reported in earlier grassland studies. These results confirm that hyperspectral measurement combined with multivariate regression techniques is a promising approach for monitoring grassland properties. There is evidence of particular benefit in capturing narrow bands associated with the red edge region of the spectrum (700–750 nm). Remotely sensed hyperspectral images at a fine spatial scale offer the prospect for matching with sampling units as small as the 2 × 2 m nutrient subplots measured here.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信