Modeling of oral squamous cell carcinoma microenvironment- A 3D bioprinting approach

Q1 Computer Science
Akhilanand Chaurasia , Gowri Sivaramakrishnan , Farah Asa’ad , Lena Larsson , Arwa Daghrery , Joana Marques , Francesca Spirito , Vitória Batista Clemente , Ana Carolina Morais Apolônio , Mahdieh Alipour , Rini Tiwari
{"title":"Modeling of oral squamous cell carcinoma microenvironment- A 3D bioprinting approach","authors":"Akhilanand Chaurasia ,&nbsp;Gowri Sivaramakrishnan ,&nbsp;Farah Asa’ad ,&nbsp;Lena Larsson ,&nbsp;Arwa Daghrery ,&nbsp;Joana Marques ,&nbsp;Francesca Spirito ,&nbsp;Vitória Batista Clemente ,&nbsp;Ana Carolina Morais Apolônio ,&nbsp;Mahdieh Alipour ,&nbsp;Rini Tiwari","doi":"10.1016/j.bprint.2024.e00381","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Oral squamous cell carcinoma (OSCC) presents significant challenges due to its complex microenvironment and invasive characteristics. Traditional two-dimensional (2D) culture systems are inadequate for modelling the intricate features of OSCC, necessitating advanced techniques for better <em>in vitro</em> modelling.</div></div><div><h3>Objective</h3><div>This review aims to explore the applications of 3D bioprinting in modelling the OSCC microenvironment, highlighting the advantages over conventional methods and discussing recent advancements in the field.</div></div><div><h3>Methods</h3><div>The review synthesizes recent literature on 3D bioprinting technologies, focusing on their application in replicating OSCC's microenvironment. Key areas include the integration of various cell types within a biomimetic extracellular matrix, the use of microfluidic systems to study tumor-stromal interactions, and the incorporation of advanced imaging modalities.</div></div><div><h3>Results</h3><div>3D bioprinting allows for the precise fabrication of complex OSCC tumor architectures, incorporating cancer cells, stromal cells, and immune cells. The integration of microfluidic systems facilitates the study of tumor invasion, metastasis, and drug response. Recent advancements in bioink development, particularly the use of patient-derived cells and biomolecules, enhance the physiological relevance of these models. Emerging imaging technologies provide unprecedented insights into the dynamics of OSCC progression within these constructs.</div></div><div><h3>Conclusion</h3><div>3D bioprinting shows immense potential for advancing the understanding of OSCC pathobiology and developing personalized therapeutic strategies. However, challenges such as standardizing bioink formulations and scaling fabrication techniques must be addressed to effectively translate these innovations into clinical practice.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"45 ","pages":"Article e00381"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Oral squamous cell carcinoma (OSCC) presents significant challenges due to its complex microenvironment and invasive characteristics. Traditional two-dimensional (2D) culture systems are inadequate for modelling the intricate features of OSCC, necessitating advanced techniques for better in vitro modelling.

Objective

This review aims to explore the applications of 3D bioprinting in modelling the OSCC microenvironment, highlighting the advantages over conventional methods and discussing recent advancements in the field.

Methods

The review synthesizes recent literature on 3D bioprinting technologies, focusing on their application in replicating OSCC's microenvironment. Key areas include the integration of various cell types within a biomimetic extracellular matrix, the use of microfluidic systems to study tumor-stromal interactions, and the incorporation of advanced imaging modalities.

Results

3D bioprinting allows for the precise fabrication of complex OSCC tumor architectures, incorporating cancer cells, stromal cells, and immune cells. The integration of microfluidic systems facilitates the study of tumor invasion, metastasis, and drug response. Recent advancements in bioink development, particularly the use of patient-derived cells and biomolecules, enhance the physiological relevance of these models. Emerging imaging technologies provide unprecedented insights into the dynamics of OSCC progression within these constructs.

Conclusion

3D bioprinting shows immense potential for advancing the understanding of OSCC pathobiology and developing personalized therapeutic strategies. However, challenges such as standardizing bioink formulations and scaling fabrication techniques must be addressed to effectively translate these innovations into clinical practice.
口腔鳞状细胞癌微环境建模- 3D生物打印方法
口腔鳞状细胞癌(OSCC)因其复杂的微环境和侵袭性特征而面临重大挑战。传统的二维(2D)培养系统不足以模拟OSCC的复杂特征,需要先进的技术来更好地进行体外建模。目的探讨生物3D打印在OSCC微环境建模中的应用,强调其相对于传统方法的优势,并讨论该领域的最新进展。方法综述了近年来生物3D打印技术的研究进展,重点介绍了3D打印技术在复制OSCC微环境中的应用。关键领域包括在仿生细胞外基质中整合各种细胞类型,使用微流体系统研究肿瘤-基质相互作用,以及结合先进的成像方式。结果3d生物打印可以精确制造复杂的OSCC肿瘤结构,包括癌细胞、基质细胞和免疫细胞。微流控系统的集成促进了肿瘤侵袭、转移和药物反应的研究。生物连接发展的最新进展,特别是患者来源的细胞和生物分子的使用,增强了这些模型的生理学相关性。新兴的成像技术为OSCC在这些结构中的进展动态提供了前所未有的见解。结论3d生物打印技术在提高对OSCC病理生物学的认识和制定个性化治疗策略方面具有巨大的潜力。然而,必须解决诸如标准化生物链接配方和规模化制造技术等挑战,才能有效地将这些创新转化为临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信