4D printing in skin tissue engineering: A revolutionary approach to enhance wound healing and combat infections

Q1 Computer Science
Laila A. Damiati , Samar A. Alsudir , Rean Y. Mohammed , Majed A. Majrashi , Shahad H. Albrahim , Aliyah algethami , Fatimah O. Alghamdi , Hala A. Alamari , Mai M. Alzaydi
{"title":"4D printing in skin tissue engineering: A revolutionary approach to enhance wound healing and combat infections","authors":"Laila A. Damiati ,&nbsp;Samar A. Alsudir ,&nbsp;Rean Y. Mohammed ,&nbsp;Majed A. Majrashi ,&nbsp;Shahad H. Albrahim ,&nbsp;Aliyah algethami ,&nbsp;Fatimah O. Alghamdi ,&nbsp;Hala A. Alamari ,&nbsp;Mai M. Alzaydi","doi":"10.1016/j.bprint.2025.e00386","DOIUrl":null,"url":null,"abstract":"<div><div>Skin infection poses significant challenges in healthcare, demanding innovative solutions to enhance the efficacy of wound-repair interventions. 4D printing represents a revolutionary approach in addition to traditional wound-management strategies. 4D-printing materials, which are dynamic and responsive, can change their shape or properties over time in response to internal or external stimuli, creating a paradigm shift in how wounds are treated. This review explores the potential of 4D printing technology as a transformative solution addressing critical challenges in skin tissue engineering. It highlights the journey from 2D fabrication of skin implants to the current state of 4D printing focusing on skin tissue structures that allow for precise and sustained release of therapeutic agents while exhibiting self-healing properties. Also, the ability to integrate antimicrobials to the printed skin constructs that respond to specific stimuli, such as pH, light, temperature, humidity, or enzymes enables the on demand and controlled release of antimicrobial agents. Additionally, integrating artificial intelligence (AI) into the fabrication process of skin tissues represents a synergistic approach that combines advanced computational methodologies with biological principles to identify the optimal conditions for enhancing tissue regeneration. Indeed, 4D bioprinting and AI-driven precision in the customization of scaffolds based on patient-specific needs promise a new era of personalized medicine in skin tissue engineering.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"45 ","pages":"Article e00386"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Skin infection poses significant challenges in healthcare, demanding innovative solutions to enhance the efficacy of wound-repair interventions. 4D printing represents a revolutionary approach in addition to traditional wound-management strategies. 4D-printing materials, which are dynamic and responsive, can change their shape or properties over time in response to internal or external stimuli, creating a paradigm shift in how wounds are treated. This review explores the potential of 4D printing technology as a transformative solution addressing critical challenges in skin tissue engineering. It highlights the journey from 2D fabrication of skin implants to the current state of 4D printing focusing on skin tissue structures that allow for precise and sustained release of therapeutic agents while exhibiting self-healing properties. Also, the ability to integrate antimicrobials to the printed skin constructs that respond to specific stimuli, such as pH, light, temperature, humidity, or enzymes enables the on demand and controlled release of antimicrobial agents. Additionally, integrating artificial intelligence (AI) into the fabrication process of skin tissues represents a synergistic approach that combines advanced computational methodologies with biological principles to identify the optimal conditions for enhancing tissue regeneration. Indeed, 4D bioprinting and AI-driven precision in the customization of scaffolds based on patient-specific needs promise a new era of personalized medicine in skin tissue engineering.
皮肤组织工程中的4D打印:一种革命性的方法来增强伤口愈合和对抗感染
皮肤感染对医疗保健提出了重大挑战,需要创新的解决方案来提高伤口修复干预措施的疗效。除了传统的伤口管理策略外,4D打印还代表了一种革命性的方法。3d打印材料具有动态和响应性,可以随着时间的推移改变其形状或特性,以响应内部或外部刺激,从而在伤口治疗方面产生范式转变。这篇综述探讨了4D打印技术作为解决皮肤组织工程关键挑战的变革性解决方案的潜力。它强调了从皮肤植入物的2D制造到4D打印的当前状态的旅程,重点是皮肤组织结构,允许治疗剂的精确和持续释放,同时表现出自我修复特性。此外,将抗菌剂整合到对特定刺激(如pH值、光、温度、湿度或酶)有反应的打印皮肤结构中的能力,使抗菌剂的按需和可控释放成为可能。此外,将人工智能(AI)集成到皮肤组织的制造过程中代表了一种协同方法,将先进的计算方法与生物学原理相结合,以确定增强组织再生的最佳条件。事实上,4D生物打印和基于患者特定需求的人工智能驱动的支架定制精度预示着皮肤组织工程个性化医疗的新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信