Dimensional analysis for jet diameter prediction in electrospray: Integrating electric field and process parameters

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Jorge A. Estrada-Díaz, Ingrid B. Aguilar-Meza, Daniel Olvera-Trejo, Alex Elías-Zúñiga, Oscar Martínez-Romero
{"title":"Dimensional analysis for jet diameter prediction in electrospray: Integrating electric field and process parameters","authors":"Jorge A. Estrada-Díaz,&nbsp;Ingrid B. Aguilar-Meza,&nbsp;Daniel Olvera-Trejo,&nbsp;Alex Elías-Zúñiga,&nbsp;Oscar Martínez-Romero","doi":"10.1016/j.jaerosci.2025.106540","DOIUrl":null,"url":null,"abstract":"<div><div>In electrospray, understanding the formation of the Taylor cone and liquid jet is required for predicting the droplet size during liquid breakup. Existing models have not assessed the effect of the electric field and its interaction with process parameters and material properties, which is particularly relevant when needle-electrode experimental setups vary. This study proposes a mathematical model and experimentally validates the prediction of jet diameter through dimensional analysis, clarifying the strong relationship between dependent and independent dimensionless groups, and observing interactions among process parameters such as wetting diameter, flow, and electric field, reflecting the effects of applied voltage and needle-electrode arrangement, as well as material properties such as surface tension, electrical conductivity, dielectric constant, and viscosity. The derived mathematical expression for jet diameter prediction demonstrated an average error of 5% when tested with ethylene glycol, effectively addressing the influence of electric field and process parameters on the proposed scaling laws.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"185 ","pages":"Article 106540"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850225000175","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In electrospray, understanding the formation of the Taylor cone and liquid jet is required for predicting the droplet size during liquid breakup. Existing models have not assessed the effect of the electric field and its interaction with process parameters and material properties, which is particularly relevant when needle-electrode experimental setups vary. This study proposes a mathematical model and experimentally validates the prediction of jet diameter through dimensional analysis, clarifying the strong relationship between dependent and independent dimensionless groups, and observing interactions among process parameters such as wetting diameter, flow, and electric field, reflecting the effects of applied voltage and needle-electrode arrangement, as well as material properties such as surface tension, electrical conductivity, dielectric constant, and viscosity. The derived mathematical expression for jet diameter prediction demonstrated an average error of 5% when tested with ethylene glycol, effectively addressing the influence of electric field and process parameters on the proposed scaling laws.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信